Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Diabetes Obes Metab ; 25(8): 2243-2254, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37139857

RESUMEN

AIMS: To assess if the risk of all-cause mortality increases in people with type 1 diabetes (T1D) with increasing number of severe hypoglycaemia episodes requiring hospitalization. MATERIALS AND METHODS: We conducted a national retrospective observational cohort study in people with T1D (diagnosed between 2000 and 2018). Clinical, comorbidity and demographic variables were assessed for impact on mortality for people with no, one, two and three or more episodes of severe hypoglycaemia requiring hospitalization. The time to death (all-cause mortality) from the timepoint of the last episode of severe hypoglycaemia was modelled using a parametric survival model. RESULTS: A total of 8224 people had a T1D diagnosis in Wales during the study period. The mortality rate (95% confidence interval [CI]) was 6.9 (6.1-7.8) deaths/ 1000 person-years (crude) and 15.31 (13.3-17.63) deaths/ 1000 person-years (age-adjusted) for those with no occurrence of severe hypoglycaemia requiring hospitalization. For those with one episode of severe hypoglycaemia requiring hospitalization the mortality rate (95% CI) was 24.9 (21.0-29.6; crude) and 53.8 (44.6-64.7) deaths/ 1000 person-years (age-adjusted), for those with two episodes of severe hypoglycaemia requiring hospitalization it was 28.0 (23.1-34.0; crude) and 72.8 (59.2-89.5) deaths/ 1000 person-years (age-adjusted), and for those with three or more episodes of severe hypoglycaemia requiring hospitalization it was 33.5 (30.0-37.3; crude) and 86.3 (71.7-103.9) deaths/ 1000 person years (age-adjusted; P < 0.001). A parametric survival model showed that having two episodes of severe hypoglycaemia requiring hospitalization was the strongest predictor for time to death (accelerated failure time coefficient 0.073 [95% CI 0.009-0.565]), followed by having one episode of severe hypoglycaemia requiring hospitalization (0.126 [0.036-0.438]) and age at most recent episode of severe hypoglycaemia requiring hospitalization (0.917 [0.885-0.951]). CONCLUSIONS: The strongest predictor for time to death was having two or more episodes of severe hypoglycaemia requiring hospitalization.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hipoglucemia , Humanos , Diabetes Mellitus Tipo 1/complicaciones , Hipoglucemiantes/uso terapéutico , Estudios Retrospectivos , Hipoglucemia/epidemiología , Hospitalización
2.
Diabet Med ; 40(2): e14981, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36259159

RESUMEN

AIMS: The aim of this systematic review and meta-analysis was to assess how running and cycling influence the magnitude of blood glucose (BG) excursions in individuals with type 1 diabetes. METHODS: A systematic literature search was conducted in EMBASE, PubMed, Cochrane Central Register of Controlled Trials, and ISI Web of Knowledge for publications from January 1950 until February 2021. Parameters included for analysis were population (adults and adolescents), exercise type, intensity, duration and insulin preparation. The meta-analysis was performed to estimate the pooled mean with a 95% confidence interval (CI) of delta BG levels. In addition, sub-group and meta-regression analyses were performed to assess the influence of these parameters on delta BG. RESULTS: The database search identified 3192 articles of which 69 articles were included in the meta-analysis. Due to crossover designs within articles, 151 different results were included for analysis. Data from 1901 exercise tests of individuals with type 1 diabetes with a mean age of 29 ± 4 years were included. Overall, exercise tests BG decreased by -3.1 mmol/L [-3.4; -2.8] within a mean duration of 46 ± 21 min. The pooled mean decrease in BG for running was -4.1 mmol/L [-4.7; -2.4], whilst the pooled mean decrease in BG for cycling was -2.7 mmol/L [-3.0; -2.4] (p < 0.0001). Overall results can be found in Table S2. CONCLUSIONS: Running led to a larger decrease in BG in comparison to cycling. Active individuals with type 1 diabetes should be aware that current recommendations for glycaemic management need to be more specific to the mode of exercise.


Asunto(s)
Diabetes Mellitus Tipo 1 , Carrera , Adulto , Humanos , Adolescente , Glucemia/análisis , Glucosa , Insulina , Carrera/fisiología
3.
Nutrients ; 14(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36501158

RESUMEN

BACKGROUND: The effects of glucose, fructose and a combination of these on physical performance have been subject of investigation, resulting in diverse findings. OBJECTIVE: The aim of this study was to investigate how an individualized amount of glucose, fructose, and a combination of these compared to placebo (sucralose) alter endurance performance on a cycle ergometer, lower and upper body resistance exercise performance at individualized thresholds in healthy young individuals. METHODS: A total of 16 healthy adults (9 females) with an age of 23.8 ± 1.6 years and a BMI of 22.6 ± 1.8 kg/m2 (body mass (BM) 70.9 ± 10.8 kg, height 1.76 ± 0.08 m) participated in this study. During the screening visit, the lactate turn point 2 (LTP2) was defined and the weights for chest-press and leg-press were determined. Furthermore, 30 min prior to each exercise session, participants received either 1 g/kg BM of glucose (Glu), 1 g/kg BM of fructose (Fru), 0.5 g/kg BM of glucose/fructose (GluFru) (each), or 0.2 g sucralose (placebo), respectively, which were dissolved in 300 mL of water. All exercises were performed until volitional exhaustion. Time until exhaustion (TTE) and cardio-pulmonary variables were determined for all cycling visits; during resistance exercise, repetitions until muscular failure were counted and time was measured. During all visits, capillary blood glucose and blood lactate concentrations as well as venous insulin levels were measured. RESULTS: TTE in cycling was 449 ± 163 s (s) (Glu), 443 ± 156 s (Fru), 429 ± 160 s (GluFru) and 466 ± 162 s (Pla) (p = 0.48). TTE during chest-press sessions was 180 ± 95 s (Glu), 180 ± 92 s (Fru), 172 ± 78 s (GluFru) and 162 ± 66 s (Pla) (p = 0.25), respectively. CONCLUSIONS: Pre-exercise supplementation of Glu, Fru and a combination of these did not have an ergogenic effect on high-intensity anaerobic endurance performance and on upper and lower body moderate resistance exercise in comparison to placebo.


Asunto(s)
Fructosa , Entrenamiento de Fuerza , Adulto , Femenino , Humanos , Adulto Joven , Glucosa , Resistencia Física , Método Doble Ciego , Ácido Láctico , Estudios Cruzados
4.
Metabolites ; 12(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36355100

RESUMEN

The aim of this systematic review and meta-analysis was to evaluate the association between glycemic control (HbA1c) and functional capacity (VO2max) in individuals with type 1 diabetes (T1DM). A systematic literature search was conducted in EMBASE, PubMed, Cochrane Central Register of Controlled Trials, and ISI Web of Knowledge for publications from January 1950 until July 2020. Randomized and observational controlled trials with a minimum number of three participants were included if cardio-pulmonary exercise tests to determine VO2max and HbA1c measurement has been performed. Pooled mean values were estimated for VO2max and HbA1c and weighted Pearson correlation and meta-regression were performed to assess the association between these parameters. We included 187 studies with a total of 3278 individuals with T1DM. The pooled mean HbA1c value was 8.1% (95%CI; 7.9−8.3%), and relative VO2max was 38.5 mL/min/kg (37.3−39.6). The pooled mean VO2max was significantly lower (36.9 vs. 40.7, p = 0.001) in studies reporting a mean HbA1c > 7.5% compared to studies with a mean HbA1c ≤ 7.5%. Weighted Pearson correlation coefficient was r = −0.19 (p < 0.001) between VO2max and HbA1c. Meta-regression adjusted for age and sex showed a significant decrease of −0.94 mL/min/kg in VO2max per HbA1c increase of 1% (p = 0.024). In conclusion, we were able to determine a statistically significant correlation between HbA1c and VO2max in individuals with T1DM. However, as the correlation was only weak, the association of HbA1c and VO2max might not be of clinical relevance in individuals with T1DM.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36293734

RESUMEN

Eleven world elite ski-mountaineering (Ski-Mo) athletes were evaluated for pronounced echocardiographic physiological remodeling as the primary aim of our feasibility speckle tracking study. In this context, sports-related cardiac remodeling was analyzed by performing two-dimensional echocardiography, including speckle tracking analysis of the left atrium (LA), right ventricle (RV) and left ventricular (LV) global longitudinal strain (LV-GLS) at rest and post-peak performance. The feasibility echocardiographic speckle tracking analysis was performed on eleven elite Ski-Mo athletes, which were obtained in 2022 during the annual medical examination. The obtained data of the professional Ski-Mo athletes (11 athletes, age: 18-26 years) were compared for different echocardiographic parameters at rest and post-exercise. Significant differences were found for LV-GLS mean (p = 0.0036) and phasic LA conduit strain pattern at rest and post-exercise (p = 0.0033). Furthermore, negative correlation between LV mass and LV-GLS (p = 0.0195, r = -0.69) and LV mass Index and LV-GLS (p = 0.0253, r = -0.66) at rest were elucidated. This descriptive reporting provided, for the first time, a sport-specific dynamic remodeling of an entire elite national team of the Ski-Mo athlete's left heart and elucidated differences in the dynamic deformation pattern of the left heart.


Asunto(s)
Ventrículos Cardíacos , Montañismo , Humanos , Adolescente , Adulto Joven , Adulto , Ventrículos Cardíacos/diagnóstico por imagen , Función Ventricular Izquierda/fisiología , Estudios de Factibilidad , Atrios Cardíacos/diagnóstico por imagen , Atletas
6.
Nutrients ; 14(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36014763

RESUMEN

The impact of glucose and fructose supplementation on acute cardiac effects during cardiopulmonary exercise testing (CPET) is a topic that is rarely investigated. The aim of the presented secondary outcome analysis of a double-blind, randomized crossover-controlled trial was to investigate the impact of glucose (Glu), fructose (Fru), glucose and fructose (GluFru), and sucralose on electrocardiogram (ECG), heart rate variability (HRV), premature ventricular complexes (PVCs), and heart rate turn points (HRTP) during CPET. Fourteen healthy individuals (age 25.4 ± 2.5 years, body mass index (BMI) 23.7 ± 1.7 kg/m2, body mass (BM) of 76.3 ± 12.3 kg) participated in this study, of which 12 were included for analysis. Participants received 1 g/kg BM of Glu, 1 g/kg BM of Fru, 0.5 g/kg BM of GluFru (each), and 0.2 g sucralose dissolved in 300 mL 30 min prior to each exercise session. No relevant clinical pathology or significant inter-individual differences between our participants could be revealed for baseline ECG parameters, such as heart rate (HR) (mean HR 70 ± 16 bpm), PQ interval (146 ± 20 ms), QRS interval (87 ± 16 ms) and the QT (405 ± 39 ms), and QTc interval (431 ± 15 ms). We found preserved cardiac autonomic function by analyzing the acute effects of different Glu, Fru, GluFru, or sucralose supplementation on cardiac autonomic function by Schellong-1 testing. SDNN and RMSSD revealed normal sympathetic and parasympathetic activities displaying a balanced system of cardiac autonomic regulation across our participating subjects with no impact on the metabolism. During CPET performance analyses, HRV values did not indicate significant changes between the ingested drinks within the different time points. Comparing the HRTP of the CPET with endurance testing by variable metabolic conditions, no significant differences were found between the HRTP of the CPET data (170 ± 12 bpm), Glu (171 ± 10 bpm), Fru (171 ± 9 bpm), GluFru (172 ± 9 bpm), and sucralose (170 ± 8 bpm) (p = 0.83). Additionally, the obtained time to reach HRTP did not significantly differ between Glu (202 ± 75 s), Fru (190 ± 88 s), GluFru (210 ± 89 s), and sucralose (190 ± 34 s) (p = 0.59). The significance of this study lies in evaluating the varying metabolic conditions on cardiac autonomic modulation in young healthy individuals. In contrast, our participants showed comparable cardiac autonomic responses determined by ECG and CPET.


Asunto(s)
Fructosa , Glucosa , Adulto , Anaerobiosis , Suplementos Dietéticos , Electrocardiografía , Fructosa/metabolismo , Glucosa/metabolismo , Frecuencia Cardíaca , Humanos , Adulto Joven
7.
J Cardiovasc Dev Dis ; 9(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893224

RESUMEN

Nine ski mountaineering (Ski-Mo), ten Nordic-cross country (NCC), and twelve world elite biathlon (Bia) athletes were evaluated for cardiopulmonary exercise test (CPET) performance and pronounced echocardiographic physiological cardiac remodeling as a primary aim of our descriptive preliminary report. In this context, a multicenter retrospective analysis of two-dimensional echocardiographic data including speckle tracking of the left ventricle (LV-GLS) and CPET performance analysis was performed in 31 elite world winter sports athletes, which were obtained during the annual sports medicine examination between 2020 and 2021. The matched data of the elite winter sports athletes (14 women, 17 male athletes, age: 18-32 years) were compared for different CPET and echocardiographic parameters, anthropometric data, and sport-specific training schedules. Significant differences could be revealed for left atrial (LA) remodeling by LA volume index (LAVI, p = 0.0052), LV-GLS (p = 0.0003), and LV mass index (LV Mass index, p = 0.0078) between the participating disciplines. All participating athletes showed excellent performance data in the CPET analyses, whereby significant differences were revealed for highest maximum respiratory minute volume (VE maximum) and the maximum oxygen pulse level across the participating athletes. This study on sport specific physiological demands in elite winter sport athletes provides new evidence that significant differences in CPET and cardiac remodeling of the left heart can be identified based on the individual athlete's training schedule, frequency, and physique.

8.
Pharmaceutics ; 14(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35745754

RESUMEN

Background: In Type 1 diabetes (T1D), according to the most recent guidelines, the everyday glucose-lowering treatment is still restricted to the use of subcutaneous insulin, while multiple therapeutic options exist for Type 2 diabetes (T2D). Methods: For this narrative review we unsystematically screened PubMed and Embase to identify clinical trials which investigated glucose-lowering agents as an adjunct to insulin treatment in people with T1D. Published studies up to March 2022 were included. We discuss the safety and efficacy in modifying cardiovascular risk factors for each drug, the current status of research, and provide a clinical perspective. Results: For several adjunct agents, in T1D, the scientific evidence demonstrates improvements in HbA1c, reductions in the risk of hypoglycemia, and achievements of lower insulin requirements, as well as positive effects on cardiovascular risk factors, such as blood lipids, blood pressure, and weight. As the prevalence of obesity, the major driver for double diabetes, is rising, weight and cardiovascular risk factor management is becoming increasingly important in people with T1D. Conclusions: Adjunct glucose-lowering agents, intended to be used in T2D, bear the potential to beneficially impact on cardiovascular risk factors when investigated in the T1D population and are suggested to be more extensively considered as potentially disease-modifying drugs in the future and should be investigated for hard cardiovascular endpoints.

9.
Sensors (Basel) ; 22(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590794

RESUMEN

Continuous glucose monitoring (CGM) represents an integral of modern diabetes management, however, there is still a lack of sensor performance data when rapidly consuming different liquids and thus changing total body water. 18 healthy adults (ten females, age: 23.1 ± 1.8 years, BMI 22.2 ± 2.1 kg·m−2) performed four trial visits consisting of oral ingestion (12 mL per kg body mass) of either a 0.9% sodium chloride, 5% glucose or Ringer's solution and a control visit, in which no liquid was administered (control). Sensor glucose levels (Dexcom G6, Dexcom Inc., San Diego, CA, USA) were obtained at rest and in 10-min intervals for a period of 120 min after solution consumption and compared against reference capillary blood glucose measurements. The overall MedARD [IQR] was 7.1% [3.3−10.8]; during control 5.9% [2.7−10.8], sodium chloride 5.0% [2.7−10.2], 5% glucose 11.0% [5.3−21.6] and Ringer's 7.5% [3.1−13.2] (p < 0.0001). The overall bias [95% LoA] was 4.3 mg·dL−1 [−19 to 28]; during control 3.9 mg·dL−1 [−11 to 18], sodium chloride 4.8 mg·dL−1 [−9 to 19], 5% glucose 3.6 mg·dL−1 [−33 to 41] and Ringer's solution 4.9 mg·dL−1 [−13 to 23]. The Dexcom G6 CGM system detects glucose with very good accuracy during liquid solution challenges in normoglycemic individuals, however, our data suggest that in people without diabetes, sensor performance is influenced by different solutions.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1 , Adulto , Glucemia , Estudios Cruzados , Femenino , Humanos , Solución de Ringer , Cloruro de Sodio , Soluciones , Adulto Joven
10.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408868

RESUMEN

In the last few years, the muscular system has gained attention due to the discovery of the muscle-secretome and its high potency for retaining or regaining health. These cytokines, described as myokines, released by the working muscle, are involved in anti-inflammatory, metabolic and immunological processes. These are able to influence human health in a positive way and are a target of research in metabolic diseases, cancer, neurological diseases, and other non-communicable diseases. Therefore, different types of exercise training were investigated in the last few years to find associations between exercise, myokines and their effects on human health. Particularly, resistance training turned out to be a powerful stimulus to enhance myokine release. As there are different types of resistance training, different myokines are stimulated, depending on the mode of training. This narrative review gives an overview about resistance training and how it can be utilized to stimulate myokine production in order to gain a certain health effect. Finally, the question of why resistance training is an important key regulator in human health will be discussed.


Asunto(s)
Entrenamiento de Fuerza , Citocinas/metabolismo , Ejercicio Físico/fisiología , Humanos , Músculo Esquelético/metabolismo
11.
Nutrients ; 14(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35276780

RESUMEN

Background: Recently, high-carbohydrate or low-carbohydrate (HC/LC) diets have gained substantial popularity, speculated to improve physical performance in athletes; however, the effects of short-term changes of the aforementioned nutritional interventions remain largely unclear. Methods: The present study investigated the impact of a three-week period of HC/low-fat (HC) diet followed by a three-week wash-out-phase and subsequent LC diet on the parameters of physical capacity assessed via cardiopulmonary exercise testing, body composition via bioimpedance analysis and blood profiles, which were assessed after each of the respective diet periods. Twenty-four physically active adults (14 females, age 25.8 ± 3.7 years, body mass index 22.1 ± 2.2 kg/m2), of which six participants served as a control group, were enrolled in the study. Results: After three weeks of each diet, VO2peak was comparable following both interventions (46.8 ± 6.7 (HC) vs. 47.2 ± 6.7 mL/kg/min (LC; p = 0.58)) while a significantly higher peak performance (251 ± 43 W (HC) vs. 240 ± 45 W (LC); (p = 0.0001), longer time to exhaustion (14.5 ± 2.4 min (HC) vs. 14.1 ± 2.4 min (LC); p = 0.002) and greater Watt/kg performance (4.1 ± 0.5 W/kg (HC) vs. 3.9 ± 0.5 W/kg (LC); p = 0.003) was demonstrated after the HC diet. In both trial arms, a significant reduction in body mass (65.2 ± 11.2 to 63.8 ± 11.8 kg (HC) vs. 64.8 ± 11.6 to 63.5 ± 11.3 kg (LC); both p < 0.0001) and fat mass (22.7% to 21.2%; (HC) vs. 22.3% to 20.6% (LC); both p < 0.0001) but not in lean body mass or skeletal muscle mass was shown when compared to baseline. Resting metabolic rate was not different within both groups (p > 0.05). Total cholesterol and LDL-cholesterol significantly decreased after the HC diet (97.9 ± 33.6 mg/dL at baseline to 78.2 ± 23.5 mg/dL; p = 0.02) while triglycerides significantly increased (76 ± 38 mg/dL at baseline to 104 ± 44 mg/dL; p = 0.005). Conclusion: A short-term HC and LC diet showed improvements in various performance parameters in favor of the HC diet. Some parameters of body composition significantly changed during both diets. The HC diet led to a significant reduction in total and LDL-cholesterol while triglycerides significantly increased.


Asunto(s)
Carbohidratos de la Dieta , Obesidad , Adulto , Composición Corporal , Estudios Cruzados , Dieta Baja en Carbohidratos , Dieta con Restricción de Grasas , Femenino , Humanos , Adulto Joven
12.
Front Physiol ; 13: 739753, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222069

RESUMEN

INTRODUCTION: We analyzed data of 27 professional basketball players to prove cardiac remodeling referring echocardiographic parameters, cardiopulmonary exercise testing (CPET), and 12-lead electrocardiogram (ECG) analyses. The aim of our study was to present different characteristics in the athletes, on the one hand signs of a high vagal tone in the 12-lead ECG as criteria of early repolarization (ER), furthermore echocardiographic remodeling parameters and finally the performance in CPET. Therefore, we divided the cohort into a group with signs of ER pattern in the 12-lead ECG and without these criteria and presented the differences in detail. MATERIALS AND METHODS: This was a single-center, retrospective study performed in 27 professional basketball players (age: 26.5 ± 7.5 years, male: 27, height: 197.2 ± 12 cm, weight: 100 ± 17 kg, BMI: 25.7 ± 3.4 kg/m2). All participants underwent a sports medicine checkup, ECG analysis, transthoracic echocardiographic examination, and a CPET on a cycle ergometer between 2015 and 2019 during their pre-season preparation time. All individuals were healthy people without cardiological advance anamnesis. After assessment, two groups were built based on electrocardiographic criteria of ER pattern and a group without these criteria and compared against each other for parameters of echocardiographic assessment, CPET, and 12-lead ECG analysis. Data were analyzed with Minitab statistic program (Minitab Inc., State College, PA, United States) and Graph Pad Prism 8.2.1 (279; Graph Pad Software, San Diego, CA, United States) using ANOVA testing with post-hoc testing and unpaired t-testing (p ≤ 0.05).Retrospectively additional information was collected referring to the management of training sessions, recovery time, and nutrition by interviewing the athletic training staff in order to understand the principles for individual athlete's training management and physiological and cardiopulmonary interactions. RESULTS: Comparing professional basketball players with ER pattern to those with no ER pattern, significant differences were found for CPET, echocardiographic, and ECG analysis (p < 0.05). Absolute and relativized peak oxygen uptake (VO2 peak; ER 4120 ± 750 ml/min (39 ± 5.4 ml/kg/min) vs. non-ER 3556 ± 393 ml/min (37.2 ± 5.3 ml/kg/min), p = 0.018) and maximum workload during CPET (ER 310 ± 51.5 Watt (2.94 ± 0.35 W/kg) vs. non-ER 271 ± 32 Watt (2.85 ± 0.49 W/kg), p = 0.026) was higher in athletes with an ER pattern. Furthermore, ER pattern athletes showed a higher enddiastolic left ventricular diameter (LVedd; ER 58.3 ± 7.9 mm vs. non-ER 53.6 ± 3.6 mm, p = 0.048) and a significantly enlarged left atrial (LA) endsystolic diameter (ER 23.33 ± 2.71 mm vs. non-ER 20.47 ± 2.29 mm, p = 0.006) as well as a significantly enlarged right atrial (RA) endsystolic diameter (ER 23.42 ± 2.15 mm vs. non-ER 20.93 ± 3.28 mm, p = 0.033). Significant differences between the two compared groups could be revealed for left ventricular mass Index (LVMI gr/m2; LVMI ER 113 gr/m2 ± 17.5 vs. LVMI non-ER 91.3 gr/m2 ± 15.1, p = 0.002), but no significant differences for the relative wall thickness were found (RWT; RWT ER 0.49 ± 0.11 vs. RWT non-ER 0.38 ± 0.06, p = 0.614). CONCLUSION: Professional basketball players with criteria of ER pattern showed different results in CPET and cardiac remodeling as athletes with no ER pattern. These findings should encourage the athletic training staff to emphasize the quality of an individual training schedule for each athlete based on the cardiopulmonary pre-season sport medicine checkup. Nevertheless, echocardiographic findings, ER pattern, and performance in CPET have to be interpreted referring the sport-specific and athlete's ethnical background.

13.
Diabetes Obes Metab ; 24(5): 849-858, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34984802

RESUMEN

AIMS: To investigate the seroconversion following first and second COVID-19 vaccination in people with type 1 and type 2 diabetes in relation to glycaemic control prior to vaccination and to analyse the response in comparison to individuals without diabetes. MATERIALS AND METHODS: This prospective, multicentre cohort study analysed people with type 1 and type 2 diabetes and a glycated haemoglobin level ≤58 mmol/mol (7.5%) or >58 mmol/mol (7.5%), respectively, and healthy controls. Roche's Elecsys anti-SARS-CoV-2 S immunoassay targeting the receptor-binding domain was used to quantify anti-spike protein antibodies 7 to 14 days after the first and 14 to 21 days after the second vaccination. RESULTS: A total of 86 healthy controls were enrolled in the study, as well as 161 participants with diabetes, of whom 150 (75 with type 1 diabetes and 75 with type 2 diabetes) were eligible for the analysis. After the first vaccination, only 52.7% of participants in the type 1 diabetes group and 48.0% of those in the type 2 diabetes group showed antibody levels above the cut-off for positivity. Antibody levels after the second vaccination were similar in participants with type 1 diabetes, participants with type 2 diabetes and healthy controls after adjusting for age, sex and multiple testing (P > 0.05). Age (r = -0.45, P < 0.001) and glomerular filtration rate (r = 0.28, P = 0.001) were significantly associated with antibody response. CONCLUSIONS: Anti-SARS-CoV-2 S receptor-binding domain antibody levels after the second vaccination were comparable in healthy controls and in participants with type 1 and type 2 diabetes, irrespective of glycaemic control. Age and renal function correlated significantly with the extent of antibody levels.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Estudios de Cohortes , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Inmunidad Humoral , Estudios Prospectivos , Vacunación
14.
Diabetes Obes Metab ; 24(3): 522-529, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34866293

RESUMEN

AIMS: To conduct a pooled analysis to assess the performance of intermittently scanned continuous glucose monitoring (isCGM) in association with the rate of change in sensor glucose in a cohort of children, adolescents, and adults with type 1 diabetes. MATERIAL AND METHODS: In this pooled analysis, isCGM system accuracy was assessed depending on the rate of change in sensor glucose. Clinical studies that have been investigating isCGM accuracy against blood glucose, accompanied with collection time points were included in this analysis. isCGM performance was assessed by means of median absolute relative difference (MedARD), Parkes error grid (PEG) and Bland-Altman plot analyses. RESULTS: Twelve studies comprising 311 participants were included, with a total of 15 837 paired measurements. The overall MedARD (interquartile range) was 12.7% (5.9-23.5) and MedARD differed significantly based on the rate of change in glucose (P < 0.001). An absolute difference of -22 mg/dL (-1.2 mmol/L) (95% limits of agreement [LoA] 60 mg/dL (3.3 mmol/L), -103 mg/dL (-5.7 mmol/L)) was found when glucose was rapidly increasing (isCGM glucose minus reference blood glucose), while a -32 mg/dL (1.8 mmol/L) (95% LoA 116 mg/dL (6.4 mmol/L), -51 mg/dL (-2.8 mmol/L)) absolute difference was observed in periods of rapidly decreasing glucose. CONCLUSIONS: The performance of isCGM was good when compared to reference blood glucose measurements. The rate of change in glucose for both increasing and decreasing glucose levels diminished isCGM performance, showing lower accuracy during high rates of glucose change.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 1 , Adolescente , Adulto , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea , Niño , Glucosa , Humanos
16.
Nutrients ; 13(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34836350

RESUMEN

The aim of this study was to investigate the impact of glucose (Glu), fructose (Fru), glucose and fructose (GluFru) and sucralose on blood glucose response in healthy individuals. Fifteen healthy individuals (five females, age of 25.4 ± 2.5 years, BMI of 23.7 ± 1.7 kg/m2 with a body mass (BM) of 76.3 ± 12.3 kg) participated in this double-blind randomized crossover placebo-controlled trial. Participants received a mixture of 300 mL of water with 1 g/kg BM of Glu, 1 g/kg BM of Fru, 0.5 g/kg BM of GluFru (each), and 0.2 g sucralose as a placebo. Peak BG values Glu were reached after 40 ± 13 min (peak BG: 141 ± 20 mg/dL), for Fru after 36 ± 22 min (peak BG: 98 ± 7 mg/dL), for GluFru after 29 ± 8 min (BG 128 ± 18 mg/dL), and sucralose after 34 ± 27 min (peak BG: 83 ± 5 mg/dL). Significant differences regarding the time until peak BG were found only between Glu and GluFru supplementation (p = 0.02). Peak blood glucose levels were significantly lower following the ingestion of Fru compared to the supplementation of Glu and GluFru (p < 0.0001) while Glu and GluFru supplementation showed no difference in peak values (p = 0.23). All conditions led to a significantly higher peak BG value compared to sucralose (p < 0.0001). Blood lactate increased in Glu (p = 0.002), Fru and GluFru (both p < 0.0001), whereas sucralose did not increase compared to the baseline (p = 0.051). Insulin levels were significantly higher in all conditions at peak compared to sucralose (p < 0.0001). The findings of this study prove the feasibility of combined carbohydrate supplementations for many applications in diabetic or healthy exercise cohorts.


Asunto(s)
Azúcares de la Dieta/administración & dosificación , Suplementos Dietéticos , Fructosa/administración & dosificación , Glucosa/administración & dosificación , Sacarosa/análogos & derivados , Adulto , Glucemia/metabolismo , Estudios Cruzados , Método Doble Ciego , Ingestión de Energía/fisiología , Femenino , Voluntarios Sanos , Humanos , Ácido Láctico/sangre , Masculino , Sacarosa/administración & dosificación , Edulcorantes/administración & dosificación , Adulto Joven
17.
Life (Basel) ; 11(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209500

RESUMEN

To investigate differences in hemodynamic, hormonal and heart rate variability parameters in women following complication-free pregnancies (healthy), preeclampsia and gestational diabetes mellitus (GDM) after giving childbirth. Data of 60 women (healthy: n = 29, age 32.7 ± 4.5 years, BMI 24.2 ± 4.3 kg/m2; preeclampsia: n = 16, age 35.3 ± 4.4 years, 28.5 ± 6.4 kg/m2; GDM, n = 15, age 32.3 ± 6.0 years, BMI 26.4 ± 6.2 kg/m2) were included. Two visits were conducted 16 and 48 weeks after giving childbirth. Hair samples were taken for analysis of cortisol and testosterone. ECG and blood pressure were recorded at each visit. Data were analyzed via RM-ANOVA and post-hoc testing (p ≤ 0.05). Heart rate increased from visit 1 to visit 2, whereas SDNN decreased (both p = 0.03). RMSSD showed an increased trend for groups (p = 0.06). Testosterone in the GDM group was significantly higher compared to the other groups (p = 0.002). Cortisol levels were significantly higher following post-hoc testing GDM was different compared to healthy individuals (p = 0.02). Hemodynamic changes from week 16 to week 48 did not differ between groups (p > 0.05). No differences between individuals with preeclampsia and healthy individuals were found for all hemodynamic parameters (p > 0.05). The study showed higher levels of chronic stress indicators in GDM measured via heart rate variability and cortisol compared to women with a history of preeclampsia and healthy women.

18.
Front Endocrinol (Lausanne) ; 12: 656346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295305

RESUMEN

Prolonged fasting has shown beneficial effects in healthy individuals and in people with chronic diseases. In type 1 diabetes, the effect or even the feasibility of fasting is unclear. We aimed to assess the impact and safety of prolonged fasting in adults with type 1 diabetes. Glycemia was assessed during overnight fasting (12 hours) vs. prolonged fasting (36 hours) via an intermittently-scanned continuous glucose monitoring system. Anthropometric data, metabolic and hormonal markers were compared between both trial arms. After each fasting period, a 75 g oral glucose tolerance test was performed and plasma glucose levels and hormones were assessed. Data were compared via paired t-tests and mixed-model regressions (p ≤ 0.05). Twenty individuals with type 1 diabetes (7 females) with a mean ± SD age of 35 ± 11 years, body mass index (BMI) 24.8 ± 2.8 kg/m2 and HbA1c 54 ± 7 mmol/mol were included. Hypoglycemia/hour (70 mg/dL; <3.9 mmol/L) was similar in both trial arms (12 hrs: 0.07 ± 0.06 vs. 36 hrs: 0.05 ± 0.03, p=0.21). Glycemic excursions during the oral glucose tolerance test were not different after the two fasting periods. Beta-hydroxybutyrate levels were higher after prolonged fasting (p=0.0006). Our study showed that people with type 1 diabetes can safely perform a 36 hours fasting period with a low risk of hypoglycemia and ketoacidosis. Clinical Trial Registration: DRKS.de, identifier DRKS00016148.


Asunto(s)
Biomarcadores/sangre , Glucemia/análisis , Índice de Masa Corporal , Diabetes Mellitus Tipo 1/fisiopatología , Ayuno , Hipoglucemiantes/uso terapéutico , Insulina/sangre , Adulto , Estudios Cruzados , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Femenino , Estudios de Seguimiento , Hemoglobina Glucada/análisis , Humanos , Masculino , Pronóstico
19.
J Clin Med ; 10(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072900

RESUMEN

The aim of this systematic review and meta-analysis was to compare time in range (TIR) (70-180 mg/dL (3.9-10.0 mmol/L)) between fully closed-loop systems (CLS) and standard of care (including hybrid systems) during physical exercise in people with type 1 diabetes (T1D). A systematic literature search was conducted in EMBASE, PubMed, Cochrane Central Register of Controlled Trials, and ISI Web of Science from January 1950 until January 2020. Randomized controlled trials including studies with different CLS were compared against standard of care in people with T1D. The meta-analysis was performed using the random effects model and restricted maximum likelihood estimation method. Six randomized controlled trials involving 153 participants with T1D of all age groups were included. Due to crossover test designs, studies were included repeatedly (a-d) if CLS or physical exercise interventions were different. Applying this methodology increased the comparisons to a total number of 266 participants. TIR was higher with an absolute mean difference (AMD) of 6.18%, 95% CI: 1.99 to 10.38% in favor of CLS. In a subgroup analysis, the AMD was 9.46%, 95% CI: 2.48% to 16.45% in children and adolescents while the AMD for adults was 1.07% 95% CI: -0.81% to 2.96% in favor of CLS. In this systematic review and meta-analysis CLS moderately improved TIR in comparison to standard of care during physical exercise in people with T1D. This effect was particularly pronounced for children and adolescents showing that the use of CLS improved TIR significantly compared to standard of care.

20.
Med Sci Sports Exerc ; 53(7): 1326-1333, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34127632

RESUMEN

PURPOSE: This study aimed to investigate the influence of residual ß-cell function on counterregulatory hormonal responses to hypoglycemia during acute physical exercise in people with type 1 diabetes (T1D). A secondary aim was to explore relationships between biomarkers of pancreatic ß-cell function and indices of glycemia following acute exercise including the nocturnal period. METHODS: This study involved an exploratory, secondary analysis of data from individuals with T1D who partook in a four-peroid, randomized, cross-over trial involving a bout of evening exercise followed by an overnight stay in a clinical laboratory facility. Participants were split into two groups: (i) a stimulated C-peptide level of ≥30 pmol⋅L-1 (low-level secretors [LLS], n = 6) or (ii) <30 pmol⋅L-1 (microsecretors [MS], n = 10). Pancreatic hormones (C-peptide, proinsulin, and glucagon), catecholamines (epinephrine [EPI] and norepinephrine [NE]), and metabolic biomarkers (blood glucose, blood lactate, and ß-hydroxybutyrate) were measured at rest, during exercise with and without a hypoglycemic (blood glucose ≤3.9 mmol⋅L-1) episode, and throughout a 13-h postexercise period. Interstitial glucose monitoring was used to assess indices of glycemic variability. RESULTS: During in-exercise hypoglycemia, LLS presented with greater sympathoadrenal (EPI and NE P ≤ 0.05) and ketone (P < 0.01) concentrations. Glucagon remained similar (P = 0.09). Over exercise, LLS experienced larger drops in C-peptide and proinsulin (both P < 0.01) as well as greater increases in EPI (P < 0.01) and ß-hydroxybutyrate (P = 0.03). LLS spent less time in the interstitial-derived hypoglycemic range acutely postexercise and had lower glucose variability throughout the nocturnal period. CONCLUSION: Higher residual ß-cell function was associated with greater sympathoadrenal and ketonic responses to exercise-induced hypoglycemia as well as improved glycemia leading into and throughout the nocturnal hours. Even a minimal amount of residual ß-cell function confers a beneficial effect on glycemic outcomes during and after exercise in people with T1D.


Asunto(s)
Péptido C/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Ejercicio Físico/fisiología , Hipoglucemia/fisiopatología , Células Secretoras de Insulina/metabolismo , Adulto , Biomarcadores/sangre , Estudios Cruzados , Femenino , Glucagón/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...