Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Opt Soc Am A Opt Image Sci Vis ; 39(5): 969-978, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36215458

RESUMEN

Optical losses degrade the sensitivity of laser interferometric instruments. They reduce the number of signal photons and introduce technical noise associated with diffuse light. In quantum-enhanced metrology, they break the entanglement between correlated photons. Such decoherence is one of the primary obstacles in achieving high levels of quantum noise reduction in precision metrology. In this work, we compare direct measurements of cavity and mirror losses in the Caltech 40 m gravitational-wave detector prototype interferometer with numerical estimates obtained from semi-analytic intra-cavity wavefront simulations using mirror surface profile maps. We show a unified approach to estimating the total loss in optical cavities (such as the LIGO gravitational detectors) that will lead towards the engineering of systems with minimum decoherence for quantum-enhanced precision metrology.

2.
Opt Express ; 24(8): 9038-52, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27137333

RESUMEN

Recent advances in ptychographic imaging have shown how the technique extends naturally to mixed state experiments, for example when the illuminating radiation is partially coherent or when the object being imaged is laterally vibrating. To date, experiments using this mixed-state form of ptychography have relied on decomposition of the illumination 'probe' into multiple modes. In this paper we demonstrate, for the first time, ptychographic imaging with the simultaneous presence of both multiple probe and multiple object states. Our results prompt a discussion of uniqueness in the reconstructed images, and we show mathematically how ambiguities can arise. This leads us to extend the reconstruction process to include additional constraints that break these ambiguities, allowing interpretation of mixed object states that are not orthogonal.

3.
Ultramicroscopy ; 158: 1-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26093970

RESUMEN

We investigate a strategy for separating the influence of three-dimensional scattering effects in tilt-series reconstruction, a method for computationally increasing the resolution of a transmission microscope with an objective lens of small numerical aperture, as occurs in the transmission electron microscope (TEM). Recent work with visible light refers to the method as Fourier ptychography. To date, reconstruction methods presume that the object is thin enough so that the beam tilt induces only a shift of the diffraction pattern in the back focal plane. In fact, it is well known that the diffraction pattern changes as a function of beam tilt when the object is thick. In this paper, we use a simple visible light model to demonstrate a proof-of-principle of a new reconstruction algorithm that can cope with this difficulty and compare it with the aperture-scanning method. Although the experiment uses a model specimen with just two distinct layers separated along the optic axis, it should in principle be extendable to continuous objects.

4.
Ultramicroscopy ; 147: 106-13, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25068588

RESUMEN

We reconsider the closed form solution of the ptychographic phase problem called the Wigner Distribution Deconvolution Method (WDDM), which has remained discarded for twenty years. Ptychographic reconstruction is nowadays always undertaken by iterative algorithms. WDDM gives rise to a 4 dimensional data cube of all the relative phases between points in the diffraction plane. Here we demonstrate a novel method to use all this information, instead of just the small subset used in the original 'stepping out' procedure developed in the 1990s, thus greatly suppressing noise. We further develop a method for designing an improved probe (illumination function) to further decrease noise effects during the deconvolution division. Combining these two with an iterative procedure for the deconvolution, which avoids the usual difficulty of a divide by a small number, we show in model calculations that WDDM competes well with the modern conventional iterative methods like ePIE (the extended Ptychographical Iterative Engine).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...