Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-517035

RESUMEN

SARS-CoV-2 is a highly transmissible respiratory pathogen whose main transmission route is airborne. Development of an animal model and exposure system that recapitulates airborne transmission of SARS-CoV-2 is integral for understanding the dynamics of SARS-CoV-2 spread in individuals and populations. Here we designed, built, and characterized a hamster transmission caging and exposure system that allows for efficient SARS-CoV-2 airborne transmission from an infected index animal to naive recipients under unidirectional airflow, without contribution from fomite or direct contact transmission. To validate our system, we assessed a 1:1 or 1:4 ratio of infected index to naive recipient hamsters and compared their virological and clinical measurements after eight hours of airborne exposure. Airborne exposure concentrations and pulmonary deposited dose of SARS-CoV-2 in index and naive hamsters, respectively, were similar in both groups. Daily nasal viral RNA levels, and terminal (day 5) lung viral RNA and infectious virus, and fecal viral RNA levels were statistically similar among 1:1 and 1:4 naive animals. However, virological measurements in the 1:4 naive animals were more variable than the 1:1 naive animals, likely due to hamster piling behavior creating uneven SARS-CoV-2 exposure during the grouped 1:4 airborne exposure. This resulted in slight, but not statistically significant, changes in daily body weights between the 1:1 and 1:4 naive groups. Our report describes a multi-chamber caging and exposure system that allowed for efficient SARS-CoV-2 airborne transmission in single and grouped hamsters. This system can be used to better define airborne transmission dynamics and test transmission-blocking therapeutic strategies against SARS-CoV-2. ImportanceThe main route of SARS-CoV-2 transmission is airborne. However, there are few experimental systems that can assess airborne transmission dynamics of SARS-CoV-2 in vivo. Here, we designed, built, and characterized a hamster transmission caging and exposure system that allows for efficient SARS-CoV-2 airborne transmission in Syrian hamsters, without contributions from fomite or direct contact transmission. We successfully measured SARS-CoV-2 viral RNA in aerosols and demonstrated that SARS-CoV-2 is transmitted efficiently at either a 1:1 or 1:4 infected index to naive recipient hamster ratio. This is meaningful as a 1:4 infected index to naive hamster ratio would allow for simultaneous comparisons of various interventions in naive animals to determine their susceptibility of infection by aerosol transmission of SARS-CoV-2. Our SARS-CoV-2 exposure system allows for testing viral airborne transmission dynamics and transmission-blocking therapeutic strategies against SARS-CoV-2 in Syrian hamsters.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-462919

RESUMEN

Transmission-blocking strategies that slow the spread of SARS-CoV-2 and protect against COVID-19 are needed. We have developed a shelf-stable, orally-delivered Ad5-vectored SARS-CoV-2 vaccine candidate that expresses the spike protein. Here we demonstrated that oral and intranasal SARS-CoV-2 vaccination of this candidate protected against disease in index hamsters, and decreased aerosol transmission to unvaccinated, naive hamsters. We confirmed that mucosally-vaccinated hamsters had robust antibody responses. We then induced a post-vaccination infection by inoculating vaccinated index hamsters with SARS-CoV-2. Oral and IN-vaccinated hamsters had decreased viral RNA and infectious virus in the nose and lungs and experienced less lung pathology compared to mock-vaccinated hamsters post challenge. Naive hamsters exposed in a unidirectional air flow chamber to mucosally-vaccinated, SARS-CoV-2-infected hamsters had lower nasal swab viral RNA and exhibited less clinical symptoms of disease than control animals. Our data demonstrate that oral immunization is a viable strategy to decrease SARS-CoV-2 disease and aerosol transmission.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-415505

RESUMEN

Neutrophil-induced oxidative stress is a mechanism of lung injury in COVID-19, and drugs with a functional thiol group ("thiol drugs"), especially cysteamine, have anti-oxidant and anti-inflammatory properties that could limit this injury. Thiol drugs may also alter the redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) and thereby disrupt ACE2 binding. Using ACE2 binding assay, reporter virus pseudotyped with SARS-CoV-2 spikes (ancestral and variants) and authentic SARS-CoV-2 (Wuhan-1), we find that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus entry into cells. Pseudoviruses carrying variant spikes were less efficiently inhibited as compared to pseudotypes bearing an ancestral spike, but the most potent drugs still inhibited the Delta variant in the low millimolar range. IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. In hamsters infected with SARS-CoV-2, intraperitoneal (IP) cysteamine decreased neutrophilic inflammation and alveolar hemorrhage in the lungs but did not decrease viral infection, most likely because IP delivery could not achieve millimolar concentrations in the airways. These data show that thiol drugs inhibit SARS-CoV-2 infection in vitro and reduce SARS-CoV-2-related lung injury in vivo and provide strong rationale for trials of systemically delivered thiol drugs as COVID-19 treatments. We propose that antiviral effects of thiol drugs in vivo will require delivery directly to the airways to ensure millimolar drug concentrations and that thiol drugs with lower thiol pKa values are most likely to be effective. One Sentence SummaryThe effect of cysteamine to decrease SARS-CoV-2 pneumonia in vivo and of multiple thiol drugs to inhibit SARS-CoV-2 infection in vitro provides rationale for clinical trials of thiol drugs in COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...