Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Sensors (Basel) ; 24(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39338614

RESUMEN

The microfluidic measurement of capillary flow can be used to evaluate the response of biological samples to stimulation, where distance and velocity are altered. Melt-extruded multi-bored microfluidic capillaries allow for high-throughput testing with low device cost, but simple devices may limit control over sample flow when compared to the more complex "lab-on-a-chip" devices produced using advanced microfluidic fabrication methods. Previously, we measured the dynamics of global haemostasis stimulated by thrombin by dipping straight vertical microcapillaries into blood, but only the most rapid response could be monitored, as flow slowed significantly within 30 s. Here, we show an innovative method to extend both the stimulation process and flow measurement time without increasing the cost of the device by adding simple loops to the flexible extruded device. The loops enable longer time-scale measurements by increasing resistance to flow, thereby reducing the dependence on high stimulus concentrations for rapid reactions. The instantaneous velocity and equilibrium heights of straight and looped vertical microcapillary films were assessed with water, plasma and whole blood, showing that the loops create additional frictional resistances, reduce flow velocity and prolong residence times for increased time scales of the stimulation process. A modified pressure balance model was used to capture flow dynamics with the added loop. Looped devices loaded with thrombin and collagen showed an improved detection of blood stimulation responses even with lower stimulus concentrations, compared to straight vertical capillaries. Thrombin-activated blood samples in straight capillaries provided a maximum measurement zone of only 4 mm, while the looped design significantly increased this to 11 mm for much longer time scale measurements. Our results suggest that extending stimulation times can be achieved without complex microfluidic fabrication methods, potentially improving concentration-response blood stimulation assays, and may enhance the accuracy and reliability. We conclude adding a loop to low-cost extruded microfluidic devices may bring microfluidic devices closer to delivering on their promise of widespread, decentralized low-cost evaluation of blood response to stimulation in both research and clinical settings.


Asunto(s)
Dispositivos Laboratorio en un Chip , Trombina , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Microfluídica/instrumentación
2.
Risk Anal ; 44(9): 2125-2147, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38501447

RESUMEN

The Wells-Riley model has been widely used to estimate airborne infection risk, typically from a deterministic point of view (i.e., focusing on the average number of infections) or in terms of a per capita probability of infection. Some of its main limitations relate to considering well-mixed air, steady-state concentration of pathogen in the air, a particular amount of time for the indoor interaction, and that all individuals are homogeneous and behave equally. Here, we revisit the Wells-Riley model, providing a mathematical formalism for its stochastic version, where the number of infected individuals follows a Binomial distribution. Then, we extend the Wells-Riley methodology to consider transient behaviours, randomness, and population heterogeneity. In particular, we provide analytical solutions for the number of infections and the per capita probability of infection when: (i) susceptible individuals remain in the room after the infector leaves, (ii) the duration of the indoor interaction is random/unknown, and (iii) infectors have heterogeneous quanta production rates (or the quanta production rate of the infector is random/unknown). We illustrate the applicability of our new formulations through two case studies: infection risk due to an infectious healthcare worker (HCW) visiting a patient, and exposure during lunch for uncertain meal times in different dining settings. Our results highlight that infection risk to a susceptible who remains in the space after the infector leaves can be nonnegligible, and highlight the importance of incorporating uncertainty in the duration of the indoor interaction and the infectivity of the infector when estimating risk.


Asunto(s)
Probabilidad , Humanos , Procesos Estocásticos , Medición de Riesgo/métodos , Modelos Teóricos , COVID-19/transmisión , Microbiología del Aire , SARS-CoV-2
3.
Sens Diagn ; 2(6): 1623-1637, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38013763

RESUMEN

Measuring the complex processes of blood coagulation, haemostasis and thrombosis that are central to cardiovascular health and disease typically requires a choice between high-resolution low-throughput laboratory assays, or simpler less quantitative tests. We propose combining mass-produced microfluidic devices with open-source robotic instrumentation to enable rapid development of affordable and portable, yet high-throughput and performance haematological testing. A time- and distance-resolved fluid flow analysis by Raspberry Pi imaging integrated with controlled sample addition and illumination, enabled simultaneous tracking of capillary rise in 120 individual capillaries (∼160, 200 or 270 µm internal diameter), in 12 parallel disposable devices. We found time-resolved tracking of capillary rise in each individual microcapillary provides quantitative information about fluid properties and most importantly enables quantitation of dynamic changes in these properties following stimulation. Fluid properties were derived from flow kinetics using a pressure balance model validated with glycerol-water mixtures and blood components. Time-resolved imaging revealed fluid properties that were harder to determine from a single endpoint image or equilibrium analysis alone. Surprisingly, instantaneous superficial fluid velocity during capillary rise was found to be largely independent of capillary diameter at initial time points. We tested if blood function could be measured dynamically by stimulating blood with thrombin to trigger activation of global haemostasis. Thrombin stimulation slowed vertical fluid velocity consistent with a dynamic increase in viscosity. The dynamics were concentration-dependent, with highest doses reducing flow velocity faster (within 10 s) than lower doses (10-30 s). This open-source imaging instrumentation expands the capability of affordable microfluidic devices for haematological testing, towards high-throughput multi-parameter blood analysis needed to understand and improve cardiovascular health.

4.
Biosensors (Basel) ; 13(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37887141

RESUMEN

The integration of Raspberry Pi miniature computer systems with microfluidics has revolutionised the development of low-cost and customizable analytical systems in life science laboratories. This review explores the applications of Raspberry Pi in microfluidics, with a focus on imaging, including microscopy and automated image capture. By leveraging the low cost, flexibility and accessibility of Raspberry Pi components, high-resolution imaging and analysis have been achieved in direct mammalian and bacterial cellular imaging and a plethora of image-based biochemical and molecular assays, from immunoassays, through microbial growth, to nucleic acid methods such as real-time-qPCR. The control of image capture permitted by Raspberry Pi hardware can also be combined with onboard image analysis. Open-source hardware offers an opportunity to develop complex laboratory instrumentation systems at a fraction of the cost of commercial equipment and, importantly, offers an opportunity for complete customisation to meet the users' needs. However, these benefits come with a trade-off: challenges remain for those wishing to incorporate open-source hardware equipment in their own work, including requirements for construction and operator skill, the need for good documentation and the availability of rapid prototyping such as 3D printing plus other components. These advances in open-source hardware have the potential to improve the efficiency, accessibility, and cost-effectiveness of microfluidic-based experiments and applications.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Microfluídica , Animales , Laboratorios , Computadores , Impresión Tridimensional , Mamíferos
5.
Antibiotics (Basel) ; 12(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37760660

RESUMEN

The time-consuming nature of current methods for detecting antimicrobial resistance (AMR) to guide mastitis treatment and for surveillance, drives innovation towards faster, easier, and more portable technology. Rapid on-farm testing could guide antibiotic selection, reducing misuse that contributes to resistance. We identify challenges that arise when developing miniaturized antibiotic susceptibility tests (AST) for rapid on-farm use directly in milk. We experimentally studied three factors: sample matrix (specifically milk or spoiled milk); the commensal bacteria found in fresh bovine milk; and result time on the performance of miniaturised AST. Microfluidic "dip-and-test" devices made from microcapillary film (MCF) were able to monitor Gram-negative bacterial growth colourimetrically even in the presence of milk and yoghurt (used to simulate spoiled milk samples), as long as this sample matrix was diluted 1:5 or more in growth medium. Growth detection kinetics using resazurin was not changed by milk at final concentrations of 20% or lower, but a significant delay was seen with yoghurt above 10%. The minimum inhibitory concentration (MIC) for ciprofloxacin and gentamicin was increased in the presence of higher concentrations of milk and yoghurt. When diluted to 1% all observed MIC were within range, indicating dilution may be sufficient to avoid milk matrix interfering with microfluidic AST. We found a median commensal cell count of 6 × 105 CFU/mL across 40 healthy milk samples and tested if these bacteria could alter microfluidic AST. We found that false susceptibility may be observed at early endpoint times if testing some pathogen and commensal mixtures. However, such errors are only expected to occur when a susceptible commensal organism is present at higher cell density relative to the resistant pathogen, and this can be avoided by reading at later endpoints, leading to a trade-off between accuracy and time-to-result. We conclude that with further optimisation, and additional studies of Gram-positive organisms, it should be possible to obtain rapid results for microfluidic AST, but a trade-off is needed between time-to-result, sample dilution, and accuracy.

6.
Sens Diagn ; 2(3): 736-750, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216011

RESUMEN

Innovation in infection based point-of-care (PoC) diagnostics is vital to avoid unnecessary use of antibiotics and the development of antimicrobial resistance. Several groups including our research team have in recent years successfully miniaturised phenotypic antibiotic susceptibility tests (AST) of isolated bacterial strains, providing validation that miniaturised AST can match conventional microbiological methods. Some studies have also shown the feasibility of direct testing (without isolation or purification), specifically for urinary tract infections, paving the way for direct microfluidic AST systems at PoC. As rate of bacteria growth is intrinsically linked to the temperature of incubation, transferring miniaturised AST nearer the patient requires building new capabilities in terms of temperature control at PoC, furthermore widespread clinical use will require mass-manufacturing of microfluidic test strips and direct testing of urine samples. This study shows for the first-time application of microcapillary antibiotic susceptibility testing (mcAST) directly from clinical samples, using minimal equipment and simple liquid handling, and with kinetics of growth recorded using a smartphone camera. A complete PoC-mcAST system was presented and tested using 12 clinical samples sent to a clinical laboratory for microbiological analysis. The test showed 100% accuracy for determining bacteria in urine above the clinical threshold (5 out of 12 positive) and achieved 95% categorical agreement for 5 positive urines tested with 4 antibiotics (nitrofurantoin, ciprofloxacin, trimethoprim and cephalexin) within 6 h compared to the reference standard overnight AST method. A kinetic model is presented for metabolization of resazurin, demonstrating kinetics of degradation of resazurin in microcapillaries follow those observed for a microtiter plate, with time for AST dependent on the initial CFU ml-1 of uropathogenic bacteria in the urine sample. In addition, we show for the first time that use of air-drying for mass-manufacturing and deposition of AST reagents within the inner surface of mcAST strips matches results obtained with standard AST methods. These results take mcAST a step closer to clinical application, for example as PoC support for antibiotic prescription decisions within a day.

7.
Front Health Serv ; 3: 1302653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235389

RESUMEN

The purpose of this mixed methods feasibility study was to gain insights into unmet clinical needs, stakeholder preferences and potential barriers and enablers to adoption for planning the implementation of point-of-care testing for earlier detection and guided treatment of chronic obstructive pulmonary disease (COPD) acute exacerbation in the NHS in England. Exacerbations of COPD cause considerable mortality and morbidity. Earlier identification of exacerbations and guided treatment would lead to reduced exacerbation duration, reduced hospitalizations and mortality, improve health-related quality of life, reduce unnecessary treatments (including inappropriate antibiotic prescribing) which could save the NHS over £400 per patient. During the early stages of product design, we took a multi-disciplinary approach to evidence generation, gaining insights from key stakeholders to test the product concept and inform evidence-based implementation planning. Primary data was collected from 11 health care and service professionals involved in the management of acute COPD exacerbations. Overall, participants agreed that by earlier differentiation of acute exacerbation from stable COPD, patients could be started on appropriate treatment. To implement point-of-care testing into clinical practice, evidence is required to demonstrate the accuracy of differentiating between exacerbation etiologies and to provide information on the beneficial impact to the system in terms of optimized management, reduced long-term side effects, admission avoidance, and cost-effectiveness. This research provides an evidence base for future implementation planning of point-of-care testing for earlier detection and guided treatment of COPD acute exacerbation. Moreover, the technology developers can decide whether to refine the product design and value proposition thereby de-risking product development.

8.
Micromachines (Basel) ; 13(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36422401

RESUMEN

Antibiotic susceptibility testing is vital to tackle the emergence and spread of antimicrobial resistance. Inexpensive digital CMOS cameras can be converted into portable digital microscopes using 3D printed x-y-z stages. Microscopic examination of bacterial motility can rapidly detect the response of microbes to antibiotics to determine susceptibility. Here, we present a new simple microdevice-miniature microscope cell measurement system for multiplexed antibiotic susceptibility testing. The microdevice is made using melt-extruded plastic film strips containing ten parallel 0.2 mm diameter microcapillaries. Two different antibiotics, ceftazidime and gentamicin, were prepared in Mueller-Hinton agar (0.4%) to produce an antibiotic-loaded microdevice for simple sample addition. This combination was selected to closely match current standard methods for both antibiotic susceptibility testing and motility testing. Use of low agar concentration permits observation of motile bacteria responding to antibiotic exposure as they enter capillaries. This device fits onto the OpenFlexure 3D-printed digital microscope using a Raspberry Pi computer and v2 camera, avoiding need for expensive laboratory microscopes. This inexpensive and portable digital microscope platform had sufficient magnification to detect motile bacteria, yet wide enough field of view to monitor bacteria behavior as they entered antibiotic-loaded microcapillaries. The image quality was sufficient to detect how bacterial motility was inhibited by different concentrations of antibiotic. We conclude that a 3D-printed Raspberry Pi-based microscope combined with disposable microfluidic test strips permit rapid, easy-to-use bacterial motility detection, with potential for aiding detection of antibiotic resistance.

9.
HardwareX ; 12: e00377, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36437840

RESUMEN

Digital imaging permits the quantitation of many experiments, such as microbiological growth assays, but laboratory digital imaging systems can be expensive and too specialised. The Raspberry Pi camera platform makes automated, controlled imaging affordable with accessible customisation. When combined with open source software and open-source 3D printed hardware, the control over image quality and capture of this platform permits the rapid development of novel instrumentation. Here we present "PiRamid", a compact, portable, and inexpensive enclosure for autonomous imaging both in the laboratory and in the field. The modular three-piece 3D printed design makes it easy to incorporate different camera systems or lighting configurations (e.g., single wavelength LED for fluorescence). The enclosed design allows complete control of illumination unlike a conventional digital camera or smartphone, on a tripod or handheld, under ambient lighting. The stackable design permits rapid sample addition or camera focus adjustment, with a corresponding change in magnification and resolution. The entire unit is small enough to fit within a microbiological incubator, and cheap enough (∼£100) to scale out for larger parallel experiments. Simply, Python scripts fully automate illumination and image capture for small-scale experiments with an ∼110×85 mm area at 70-90 µm resolution. We demonstrate the versatility of PiRamid by capturing time-resolved, quantitative image data for a wide range of assays. Bacterial growth kinetics was captured for conventional microbiology (agar Petri dishes), 3D printed custom microbiology labware and microfluidic microbiology. To illustrate application beyond microbiology, we demonstrate time-lapse imaging of crystal growth and degradation of salad leaves. Minor modifications permit epi-illumination by addition of a LED ring to the camera module. We conclude that PiRamid permits inexpensive digital capture and quantitation of a wide range of experiments by time-lapse imaging to simplify both laboratory and field imaging.

10.
Cureus ; 14(6): e25764, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35812601

RESUMEN

There are limited options for intravenous anesthetics and a lack of available information on the use of ketamine infusion during intracranial surgeries. We present a patient case report of hyperlactatemia during a craniotomy with neuromonitoring while on a propofol infusion with arterial lactate rising from 2.1 mmol/L to a peak of 5.0 mmol/L before reducing to 3.9 mmol/L after the transition to a mixed ketamine and dexmedetomidine infusion in order to maintain neuromonitoring quality and an appropriate depth of anesthesia. No complications were caused by the use of ketamine during this extended neurosurgery case.

11.
Analyst ; 147(15): 3558-3569, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35801578

RESUMEN

Antibiotic resistance is a major global challenge. Although microfluidic antibiotic susceptibility tests (AST) offer great potential for rapid and portable testing to inform correct antibiotic selection, the impact of miniaturisation on broth microdilution (BMD) is not fully understood. We developed a 10-plex microcapillary based broth microdilution using resazurin as a colorimetric indicator for bacterial growth. Each capillary had a 1 microlitre capillary volume, 100 times smaller than microplate broth microdilution. The microcapillary BMD was compared to an in-house standard microplate AST and commercial Vitek 2 system. When tested with 25 uropathogenic isolates (20 Escherichia coli and 5 Klebsiella pneumoniae) and 2 reference E. coli, these devices gave 96.1% (441/459 isolate/antibiotic combinations) categorical agreement, across 17 therapeutically beneficial antibiotics, compared to in-house microplate BMD with resazurin. A further 99 (50 E. coli and 49 K. pneumoniae) clinical isolates were tested against 10 antibiotics and showed 92.3% categorical agreement (914/990 isolate/antibiotic combinations) compared to the Vitek 2 measurements. These microcapillary tests showed excellent analytical agreement with existing AST methods. Furthermore, the small size and simple colour change can be recorded using a smartphone camera or it is feasible to follow growth kinetics using very simple, low-cost readers. The test strips used here are produced in large batches, allowing hundreds of multiplex tests to be made and tested rapidly. Demonstrating performance of miniaturised broth microdilution with clinical isolates paves the way for wider use of microfluidic AST.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana
12.
Lab Chip ; 22(15): 2820-2831, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35792607

RESUMEN

Counting viable bacterial cells and functional bacteriophage is fundamental to microbiology underpinning research, surveillance, biopharmaceuticals and diagnostics. Colony forming unit (CFU) and plaque forming unit (PFU) counting still requires slow and laborious solid culture on agar in Petri dishes or plates. Here, we show that dip-stick microfluidic strips can be used without growth indicator dye for rapid and simple CFU ml-1 and PFU ml-1 measurement. We demonstrate for the first time that fluoropolymer microcapillaries combined with digital imaging allow bacteriophage plaques to be counted rapidly in a dip-and-test format. The microfluidic length scales offer a linear 1-dimensional alternative to a 2D solid agar medium surface, with colonies or plaques clearly visible as "dashes" or "gaps". An inexpensive open source darkfield biosensor system using Raspberry Pi imaging permits label-free detection and counting of colonies or plaques within 4-8 hours in a linear, liquid matrix within ∼200 µm inner diameter microcapillaries. We obtained full quantitative agreement between 1D microfluidic colony counting in dipsticks versus conventional 2D solid agar Petri dish plates for S. aureus and E. coli, and for T2 phage and phage K, but up to 6 times faster. Time-lapse darkfield imaging permitted detailed kinetic analysis of colony growth in the microcapillaries, providing new insight into microfluidic microbiology and colony growth, not possible with Petri dishes. Surprisingly, whilst E. coli colonies appeared earlier, subsequent colony expansion was faster along the microcapillaries for S. aureus. This may be explained by the microenvironment offered for 1D colony growth within microcapillaries, linked to a mass balance between nutrient (glucose) diffusion and bacterial growth kinetics. Counting individual colonies in liquid medium was not possible for motile strains that spread rapidly along the capillary, however inclusion of soft agar inhibited spreading, making this new simple dip-and-test counting method applicable to both motile and non-motile bacteria. Label-free dipstick colony and plaque counting has potential for many analytical microbial tasks, and the innovation of 1D colony counting has relevance to other microfluidic microbiology.


Asunto(s)
Bacteriófagos , Agar , Bacterias , Recuento de Colonia Microbiana , Escherichia coli , Cinética , Microfluídica , Staphylococcus aureus
13.
Micromachines (Basel) ; 13(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35744555

RESUMEN

The early detection of antimicrobial resistance remains an essential step in the selection and optimization of antibiotic treatments. Phenotypic antibiotic susceptibility testing including the measurement of minimum inhibitory concentration (MIC) remains critical for surveillance and diagnostic testing. Limitations to current testing methods include bulky labware and laborious methods. Furthermore, the requirement of a single strain of bacteria to be isolated from samples prior to antibiotic susceptibility testing delays results. The mixture of bacteria present in a sample may also have an altered resistance profile to the individual strains, and so measuring the susceptibility of the mixtures of organisms found in some samples may be desirable. To enable simultaneous MIC and bacterial species detection in a simple and rapid miniaturized format, a 3D-printed frame was designed for a multi-sample millifluidic dip-slide device that combines panels of identification culture media with a range of antibiotics (Ampicillin, Amoxicillin, Amikacin, Ceftazidime, Cefotaxime, Ofloxacin, Oxytetracycline, Streptomycin, Gentamycin and Imipenem) diluted in Muëller-Hinton Agar. Our proof-of-concept evaluation confirmed that the direct detection of more than one bacterium parallel to measuring MIC in samples is possible, which is validated using reference strains E. coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa ATCC 10145, and Staphylococcus aureus ATCC 12600 and with mastitis milk samples collected from Reading University Farm. When mixtures were tested, a MIC value was obtained that reflected the most resistant organism present (i.e., highest MIC), suggesting it may be possible to estimate a minimum effective antibiotic concentration for mixtures directly from samples containing multiple pathogens. We conclude that this simple miniaturized approach to the rapid simultaneous identification and antibiotic susceptibility testing may be suitable for directly testing agricultural samples, which is achieved through shrinking conventional tests into a simple "dip-and-incubate" device that can be 3D printed anywhere.

14.
PLoS Negl Trop Dis ; 16(4): e0010266, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35389998

RESUMEN

Laboratory diagnosis of dengue virus (DENV) infection including DENV serotyping requires skilled labor and well-equipped settings. DENV NS1 lateral flow rapid test (LFT) provides simplicity but lacks ability to identify serotype. A simple, economical, point-of-care device for serotyping is still needed. We present a gravity driven, smartphone compatible, microfluidic device using microcapillary film (MCF) to perform multiplex serotype-specific immunoassay detection of dengue virus NS1. A novel device-termed Cygnus-with a stackable design allows analysis of 1 to 12 samples in parallel in 40 minutes. A sandwich enzyme immunoassay was developed to specifically detect NS1 of all four DENV serotypes in one 60-µl plasma sample. This test aims to bridge the gap between rapid LFT and laboratory microplate ELISAs in terms of sensitivity, usability, accessibility and speed. The Cygnus NS1 assay was evaluated with retrospective undiluted plasma samples from 205 DENV infected patients alongside 50 febrile illness negative controls. Against the gold standard RT-PCR, clinical sensitivity for Cygnus was 82% in overall (with 78, 78, 80 and 76% for DENV1-4, respectively), comparable to an in-house serotyping NS1 microplate ELISA (82% vs 83%) but superior to commercial NS1-LFT (82% vs 74%). Specificity of the Cygnus device was 86%, lower than that of NS1-microplate ELISA and NS1-LFT (100% and 98%, respectively). For Cygnus positive samples, identification of DENV serotypes DENV2-4 matched those by RT-PCR by 100%, but for DENV1 capillaries false positives were seen, suggesting an improved DENV1 capture antibody is needed to increase specificity. Overall performance of Cygnus showed substantial agreement to NS1-microplate ELISA (κ = 0.68, 95%CI 0.58-0.77) and NS1-LFT (κ = 0.71, 95%CI 0.63-0.80). Although further refinement for DENV-1 NS1 detection is needed, the advantages of multiplexing and rapid processing time, this Cygnus device could deliver point-of-care NS1 antigen testing including serotyping for timely DENV diagnosis for epidemic surveillance and outbreak prediction.


Asunto(s)
Virus del Dengue , Dengue , Anticuerpos Monoclonales , Anticuerpos Antivirales , Antígenos Virales , Ensayo de Inmunoadsorción Enzimática , Humanos , Estudios Retrospectivos , Sensibilidad y Especificidad , Serogrupo , Teléfono Inteligente , Proteínas no Estructurales Virales/genética
15.
ACS Sens ; 6(12): 4338-4348, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34854666

RESUMEN

A range of biosensing techniques including immunoassays are routinely used for quantitation of analytes in biological samples and available in a range of formats, from centralized lab testing (e.g., microplate enzyme-linked immunosorbent assay (ELISA)) to automated point-of-care (POC) and lateral flow immunochromatographic tests. High analytical performance is intrinsically linked to the use of a sequence of reagent and washing steps, yet this is extremely challenging to deliver at the POC without a high level of fluidic control involving, e.g., automation, fluidic pumping, or manual fluid handling/pipetting. Here we introduce a microfluidic siphon concept that conceptualizes a multistep ″dipstick″ for quantitative, enzymatically amplified immunoassays using a strip of microporous or microbored material. We demonstrated that gravity-driven siphon flow can be realized in single-bore glass capillaries, a multibored microcapillary film, and a glass fiber porous membrane. In contrast to other POC devices proposed to date, the operation of the siphon is only dependent on the hydrostatic liquid pressure (gravity) and not capillary forces, and the unique stepwise approach to the delivery of the sample and immunoassay reagents results in zero dead volume in the device, no reagent overlap or carryover, and full start/stop fluid control. We demonstrated applications of a 10-bore microfluidic siphon as a portable ELISA system without compromised quantitative capabilities in two global diagnostic applications: (1) a four-plex sandwich ELISA for rapid smartphone dengue serotype identification by serotype-specific dengue virus NS1 antigen detection, relevant for acute dengue fever diagnosis, and (2) quantitation of anti-SARS-CoV-2 IgG and IgM titers in spiked serum samples. Diagnostic siphons provide the opportunity for high-performance immunoassay testing outside sophisticated laboratories, meeting the rapidly changing global clinical and public health needs.


Asunto(s)
COVID-19 , Microfluídica , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoensayo , SARS-CoV-2
16.
ACS Sens ; 6(7): 2682-2690, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34138534

RESUMEN

The performance of biosensors is often optimized in buffers, which brings inconsistencies during applications with biological samples. Current strategies for minimizing sample (matrix) interference are complex to automate and miniaturize, involving, e.g., sample dilution or recovery of serum/plasma. This study shows the first systematic analysis using hundreds of actual microfluidic immunoassay fluoropolymer strips to understand matrix interference in microflow systems. As many interfering factors are assay-specific, we have explored matrix interference for a range of enzymatic immunoassays, including a direct mIgG/anti-mIgG, a sandwich cancer biomarker PSA, and a sandwich inflammatory cytokine IL-1ß. Serum matrix interference was significantly affected by capillary antibody surface coverage, suggesting for the first time that the main cause of the serum matrix effect is low-affinity serum components (e.g., autoantibodies) competing with high-affinity antigens for the immobilized antibody. Additional experiments carried out with different capillary diameters confirmed the importance of antibody surface coverage in managing matrix interference. Building on these findings, we propose a novel analytical approach where antibody surface coverage and sample incubation times are key for eliminating and/or minimizing serum matrix interference, consisting in bioassay optimization carried out in serum instead of buffer, without compromising the performance of the bioassay or adding extra cost or steps. This will help establishing a new route toward faster development of modern point-of-care tests and effective biosensor development.


Asunto(s)
Técnicas Biosensibles , Microfluídica , Anticuerpos , Inmunoensayo , Pruebas en el Punto de Atención
17.
J Microbiol Methods ; 187: 106199, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33771524

RESUMEN

Viable bacterial cell counting is fundamental to analytical microbiology and agar plate colony counting remains common yet laborious and slow. Here, we demonstrate two methods for counting bacteria using commercially available microfluidic devices. We show that accurate viable cell counting is possible using simple and easy 'dip and test' arrays of microcapillaries. Colorimetric and fluorescent growth detection both permit viable cell counting in microcapillaries either by limiting dilution into multiple microfluidic compartments using a single endpoint measurement, or alternatively by quantifying growth kinetics. The microcapillary devices are compatible with conventional 96 well plates and multichannel pipettes, expanding each microplate row into 120 individual 1 or 2 µL samples. At limiting dilution, counting the proportion of positive compartments permitted accurate calculation of gram-negative and gram-positive bacteria (E. coli and S. saprophyticus) at concentrations down to as low as 10 CFU/mL with almost 1:1 agreement with agar plate colony counts over four orders of magnitude. A smartphone camera was sufficient to record endpoint images of resazurin growth detection both colorimetrically and fluorescently. Viable cell counting of E. coli and S. saprophyticus was also possible through recording growth kinetics and determining the time taken to detect resazurin conversion. However, only the limiting dilution method remained consistent in the presence of urine matrix, as some interference in growth rate was observed when bacteria were spiked into higher concentrations of normal urine to simulate urinary tract infection patient samples. However, with the limiting dilution counting method endpoint growth was always detected even in the presence of 90% urine matrix, suggesting that this method might permit bacterial pathogen counting directly in clinical samples without agar plating.


Asunto(s)
Carga Bacteriana , Dispositivos Laboratorio en un Chip , Viabilidad Microbiana , Recuento de Colonia Microbiana , Colorimetría , Escherichia coli/crecimiento & desarrollo , Humanos , Oxazinas , Tiras Reactivas , Teléfono Inteligente , Staphylococcus saprophyticus/crecimiento & desarrollo , Infecciones Urinarias/microbiología , Orina/microbiología , Xantenos
18.
RSC Adv ; 11(60): 38258-38263, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-35498063

RESUMEN

Rapid and portable direct tests for antibiotic resistance in human clinical samples such as urine could reduce misuse of precious antimicrobials, by allowing treatment decisions to be informed by microfluidic diagnostic tests. We demonstrate that the variable composition of human urine can significantly affect the antibiotic minimum inhibitory concentration (MIC) measured using microfluidic devices. The urine sample matrix interference was not observed in pooled normal urine, emphasising the critical importance of assessing matrix interference with a wide range of individual urine samples, rather than a few standardised or pooled controls. Both dilution into assay medium and inclusion of buffer could reduce the matrix interference, but dilution may affect analytical sensitivity by increasing the minimum bacterial cell density needed in a sample for growth to be detected, especially for miniaturised devices that test small sample volumes. We conclude it is vital to fully assess and optimise novel analytical microbiology tools using multiple individual urine samples, otherwise the high variation in matrix interference will compromise the clinical performance of these rapid diagnostics that are urgently needed to tackle the global threat of antimicrobial resistance.

19.
Wellcome Open Res ; 6: 57, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36312459

RESUMEN

Background: Miniaturised bioassays permit diagnostic testing near the patient, and the results can be recorded digitally using inexpensive cameras including smartphone and mobile phone cameras. Although digital cameras are now inexpensive and portable, the minimum performance required for microfluidic diagnostic bioassays has not been defined. We present a systematic comparison of a wide range of different digital cameras for capturing and measuring results of microfluidic bioassays and describe a framework to specify performance requirements to quantify immunoassays. Methods: A set of 200 µm diameter microchannels was filled with a range of concentrations of dyes used in colorimetric and fluorometric enzyme immunoassays. These were imaged in parallel using cameras of varying cost and performance ranging from <£30 to >£500. Results: Higher resolution imaging allowed larger numbers of microdevices to be resolved and analysed in a single image. In contrast, low quality cameras were still able to quantify results but for fewer samples. In some cases, an additional macro lens was added to focus closely. If image resolution was sufficient to identify individual microfluidic channels as separate lines, all cameras were able to quantify a similar range of concentrations of both colorimetric and fluorometric dyes. However, the mid-range cameras performed better, with the lowest cost cameras only allowing one or two samples to be quantified per image. Consistent with these findings, we demonstrate that quantitation (to determine endpoint titre) of antibodies against dengue and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses is possible using a wide range of digital imaging devices including the mid-range smartphone iPhone 6S and a budget Android smartphone costing <£50. Conclusions: In conclusion, while more expensive and higher quality cameras allow larger numbers of devices to be simultaneously imaged, even the lowest resolution and cheapest cameras were sufficient to record and quantify immunoassay results.

20.
HardwareX ; 10: e00242, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35607667

RESUMEN

Incubation at controlled temperature is a key step in culture based microbiological tests. Access to culture-based microbiological testing requires access to conventional incubators in a laboratory. Portable incubators allow microbiological testing in the field and in resource-limited settings, and can eliminate the challenge of sample transportation, minimising the chance of sample degradation. Recent studies have reported low-cost portable incubator designs suitable for field or off-grid use, but these either need an external power supply (e.g. mains AC or 12 V DC), or rely on passive heating without thermostatic control. Here we report that small inexpensive uninterruptable power supply (UPS) products manufactured for consumer electronics and powered by lithium-ion battery packs allowing thermostatic temperature control in small portable incubators that can maintain precise temperatures with or without external power. We present an open-source design for a Microbiological Mobile Incubator (MicroMI) in two sizes for field use. The MicroMI is built from simple and widely available components and is easy to set up. The open source design can be customised for different numbers of samples. The smallest and most efficient design uses a vacuum insulated food flask that allows longer operation with smaller, lower capacity UPS. The larger flight case design has space for more samples, but depletes the battery faster. The UPS maintains a typical microbiology incubation temperature for up to 24 h without external power- ideal for typical incubation needed for culture methods. The battery capacity, incubator design, and external ambient temperature all affected duration of operation without requiring external power. We validated the MicroMI by conducting classical microbiological tests using agar petri dishes, slant cultures and dip slides, and biochemical tests. We conclude the MicroMI design allows inexpensive lithium battery products to be used to simplify field microbiology and increase access to vital analytical microbiology testing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA