Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22283598

RESUMEN

As SARS-CoV-2 continues to evolve, mutations arise that will allow the virus to evade immune defenses and therapeutics. Assays that can identify these mutations can be used to guide personalized patient treatment plans. Digital PCR (dPCR) is a fast and reliable complement to whole genome sequencing that can be used to discriminate single nucleotide polymorphisms (SNPs) in template molecules. Here, we developed a panel of SARS-CoV-2 dPCR assays and demonstrate its applications for typing variant lineages and therapeutic monoclonal antibody resistance. We designed multiplexed dPCR assays for SNPs located at residue 3395 in the orf1ab gene and residue 143 of the spike gene that differentiate the Delta, Omicron BA.1, and Omicron BA.2 lineages. We demonstrate their validity on 596 clinical saliva specimens that were sequence-verified using Illumina whole genome sequencing. Next, we developed dPCR assays for spike mutations R346T, K444T, N460K, F486V, and F486S mutations that are associated with host immune evasion and reduced therapeutic monoclonal antibody efficacy. We demonstrate that these assays can be run individually or multiplexed to detect the presence of up to 4 SNPs in a single assay. We validate these dPCR assays on 81 clinical saliva SARS-CoV-2 positive specimens from Omicron subvariants BA.2.75.2, BM.1.1, BN.1, BF.7, BQ.1, BQ.1.1, and XBB. Thus, dPCR could serve as a useful tool to determine if clinical specimens contain therapeutically relevant mutations and inform patient treatment.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22278212

RESUMEN

Large scale outbreaks of the SARS-CoV-2 Delta variant have occurred in numerous settings, including universities. An outbreak of the SARS-CoV-2 Delta AY.25 lineage associated with a university campus with multiple transmission events was identified; genomic analyses characterized this outbreak and complemented contract tracing and wastewater surveillance strategies that strengthened overall public health response actions. Epidemiologic and clinical data routinely gathered through contact tracing and public health investigations were matched to genomic sequencing of SARS-CoV-2 positive samples belonging to a suspect cluster identified through ongoing phylogenomic analyses. Continued phylogenetic analyses were conducted to describe the AY.25 outbreak. Wastewater collected twice weekly from sites across campus was tested for SARS-CoV-2 by RT-qPCR, and subsequently sequenced to identify variants. The AY.25 outbreak was defined by a single mutation (C18804T) and comprised 379 genomes from SARS-CoV-2 positive cases associated with the university and community. Several undergraduate student gatherings and congregate living settings on campus likely contributed to the rapid spread of COVID-19 across the university with secondary transmission into the community. The clade defining mutation was also found in wastewater samples collected from around student dormitories during "move-in", a week before the semester began, and 9 days before cases were identified. Genomic, epidemiologic, and wastewater surveillance provided evidence that an AY.25 clone was likely imported into the university setting just prior to the onset of the Fall 2021 semester, rapidly spread through a subset of the student population, and then subsequent spillover occurred in the surrounding community. The university and local public health department worked closely together to facilitate timely reporting of cases, identification of close contacts, and other necessary response and mitigation strategies. The emergence of new SARS-CoV-2 variants and potential threat of other infectious disease outbreaks on university campuses presents an opportunity for future comprehensive One Health genomic data driven, targeted interventions.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21254367

RESUMEN

SARS-CoV-2 is locked in a high-stakes arms race between the dynamics of rising population immunity and escape mutations. The E484K mutation in the spike protein reduces neutralization by post-vaccination sera and monoclonal antibody therapeutics. We detected the emergence of an E484K harboring variant B.1.243.1 from a common circulating variant (B.1.243) in the United States. In contrast to other instances when the E484K mutation was acquired independently in the parental lineage, genomic surveillance indicates that the B.1.243.1 variant of interest is in the process of being established in Arizona and beginning to cross state borders to New Mexico and Texas. Genomic, epidemiologic and phylogenetic evidence indicates that the B.1.243.1 variant of interest is poised to emerge. These findings demonstrate the critical need to continue tracking SARS-CoV-2 in real-time to inform public health strategies, diagnostics, medical countermeasures and vaccines.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21250320

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from a zoonotic spill-over event and has led to a global pandemic. The public health response has been predominantly informed by surveillance of symptomatic individuals and contact tracing, with quarantine, and other preventive measures have then been applied to mitigate further spread. Non-traditional methods of surveillance such as genomic epidemiology and wastewater-based epidemiology (WBE) have also been leveraged during this pandemic. Genomic epidemiology uses high-throughput sequencing of SARS-CoV-2 genomes to inform local and international transmission events, as well as the diversity of circulating variants. WBE uses wastewater to analyse community spread, as it is known that SARS-CoV-2 is shed through bodily excretions. Since both symptomatic and asymptomatic individuals contribute to wastewater inputs, we hypothesized that the resultant pooled sample of population-wide excreta can provide a more comprehensive picture of SARS-CoV-2 genomic diversity circulating in a community than clinical testing and sequencing alone. In this study, we analysed 91 wastewater samples from 11 states in the USA, where the majority of samples represent Maricopa County, Arizona (USA). With the objective of assessing the viral diversity at a population scale, we undertook a single-nucleotide variant (SNV) analysis on data from 52 samples with >90% SARS-CoV-2 genome coverage of sequence reads, and compared these SNVs with those detected in genomes sequenced from clinical patients. We identified 7973 SNVs, of which 5680 were "novel" SNVs that had not yet been identified in the global clinical-derived data as of 17th June 2020 (the day after our last wastewater sampling date). However, between 17th of June 2020 and 20th November 2020, almost half of the SNVs have since been detected in clinical-derived data. Using the combination of SNVs present in each sample, we identified the more probable lineages present in that sample and compared them to lineages observed in North America prior to our sampling dates. The wastewater-derived SARS-CoV-2 sequence data indicates there were more lineages circulating across the sampled communities than represented in the clinical-derived data. Principal coordinate analyses identified patterns in population structure based on genetic variation within the sequenced samples, with clear trends associated with increased diversity likely due to a higher number of infected individuals relative to the sampling dates. We demonstrate that genetic correlation analysis combined with SNVs analysis using wastewater sampling can provide a comprehensive snapshot of the SARS-CoV-2 genetic population structure circulating within a community, which might not be observed if relying solely on clinical cases.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20095935

RESUMEN

In December of 2019, a novel coronavirus, SARS-CoV-2, emerged in the city of Wuhan, China causing severe morbidity and mortality. Since then, the virus has swept across the globe causing millions of confirmed infections and hundreds of thousands of deaths. To better understand the nature of the pandemic and the introduction and spread of the virus in Arizona, we sequenced viral genomes from clinical samples tested at the TGen North Clinical Laboratory, provided to us by the Arizona Department of Health Services, and at Arizona State University and the University of Arizona, collected as part of community surveillance projects. Phylogenetic analysis of 79 genomes we generated from across Arizona revealed a minimum of 9 distinct introductions throughout February and March. We show that >80% of our sequences descend from clades that were initially circulating widely in Europe but have since dominated the outbreak in the United States. In addition, we show that the first reported case of community transmission in Arizona descended from the Washington state outbreak that was discovered in late February. Notably, none of the observed transmission clusters are epidemiologically linked to the original travel-related cases in the state, suggesting successful early isolation and quarantine. Finally, we use molecular clock analyses to demonstrate a lack of identifiable, widespread cryptic transmission in Arizona prior to the middle of February 2020.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20069641

RESUMEN

On January 26 2020, the first Coronavirus Disease 2019 (COVID-19) case was reported in Arizona of an individual with travel history (3rd case in the US) (1). Here, we report on early SARS-CoV-2 sentinel surveillance in Tempe, Arizona (USA). Genomic characterization identified an isolate encoding a 27 amino acid in-frame deletion in accessory protein ORF7a, the ortholog of SARS-CoV immune antagonist ORF7a/X4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...