Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542258

RESUMEN

As a space project, in "Stem Cells" by the Japan Aerospace Exploration Agency (JAXA), frozen mouse ES cells were stored on the International Space Station (ISS) in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) for 1584 days. After taking these cells back to the ground, the cells were thawed and cultured, and their gene expressions were comprehensively analyzed using RNA sequencing in order to elucidate the early response of the cells to long-time exposure to space radiation consisting of various ionized particles. The comparisons of gene expression involved in double-stranded break (DSB) repair were examined. The expressions of most of the genes that were involved in homologous recombination (HR) and non-homologous end joining (NHEJ) were not significantly changed between the ISS-stocked cells and ground-stocked control cells. However, the transcription of Trp53inp1 (tumor protein 53 induced nuclear protein-1), Cdkn1a (p21), and Mdm2 genes increased in ISS-stocked cells as well as Fe ion-irradiated cells compared to control cells. This suggests that accumulated DNA damage caused by space radiation exposure would activate these genes, which are involved in cell cycle arrest for repair and apoptosis in a p53-dependent or -independent manner, in order to prevent cells with damaged genomes from proliferating and forming tumors.


Asunto(s)
Roturas del ADN de Doble Cadena , Células Madre Embrionarias de Ratones , Animales , Ratones , Reparación del ADN , Reparación del ADN por Unión de Extremidades , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica
2.
Heliyon ; 8(8): e10266, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36061033

RESUMEN

Nowadays, ordinary people can travel in space, and the possibility of extended durations in an environment such as moon of the Earth and Mars with higher space radiation exposures compared to past missions, is increasing. Until now, the physical doses of space radiation have been measured, but measurement of direct biological effects has been hampered by its low dose and low dose-rate effect. To assess the biological effects of space radiation, we launched and kept frozen mouse embryonic stem (ES) cells in minus eighty degree Celsius freezer in ISS (MELFI) on the International Space Station (ISS) for a maximum of 1,584 days. The passive dosimeter for life science experiments in space (PADLES) was attached on the surface of the sample case of the ES cells. The physical dosimeter measured the absorbed dose in water. After return, the frozen cells were thawed and cultured and their chromosome aberrations were analyzed. Comparative experiments with proton and iron ion irradiation were performed at particle accelerators on Earth. The wild-type ES cells showed no differences in chromosomal aberrations between the ground control and ISS exposures. However, we detected an increase of chromosome aberrations in radio-sensitized histone H2AX heterozygous-deficient mouse ES cells and found that the rate of increase against the absorbed dose was 1.54-fold of proton irradiation at an accelerator. On the other hand, we estimated the quality factor of space radiation as 1.48 ± 0.2. using formulas of International Commission of Radiation Protection (ICRP) 60. The relative biological effectiveness (RBE) observed from our experiments (1.54-fold of proton) was almost equal (1.04-fold) to the physical estimation (1.48 ± 0.2). It should be important to clarify the relation between biological effect and physical estimates of space radiation. This comparative study paves a way to reveal the complex radiation environments to reduce the uncertainty for risk assessment of human stay in space.

3.
Dose Response ; 16(3): 1559325818790152, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30150909

RESUMEN

The existence of radiation-induced adaptive response (AR) was reported in varied biosystems. In mice, the first in vivo AR model was established using X-rays as both the priming and the challenge doses and rescue of bone marrow death as the end point. The underlying mechanism was due to the priming radiation-induced resistance in the blood-forming tissues. In a series of investigations, we further demonstrated the existence of AR using different types of ionizing radiation (IR) including low linear energy transfer (LET) X-rays and high LET heavy ion. In this article, we validated hematopoietic stem cells/hematopoietic progenitor cells (HSCs/HPCs) measured as endogenous colony-forming units-spleen (CFU-S) under AR inducible and uninducible conditions using combination of different types of IR. We confirmed the consistency of increased CFU-S number change with the AR inducible condition. These findings suggest that AR in mice induced by different types of IR would share at least in part a common underlying mechanism, the priming IR-induced resistance in the blood-forming tissues, which would lead to a protective effect on the HSCs/HPCs and play an important role in rescuing the animals from bone marrow death. These findings provide a new insight into the mechanistic study on AR in vivo.

4.
J Radiat Res ; 54(1): 45-51, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22923746

RESUMEN

Existence of adaptive response (AR) was previously demonstrated in C57BL/6J mice. Irradiations were performed by delivering a priming low dose of X-rays (0.50 Gy) in combination with a challenge high dose of accelerated carbon or neon ion particles. AR was characterized by significantly decreased mortality in the 30-day survival test. This mouse AR model ('Yonezawa Effect') was originally established by using X-rays as both the priming and challenge irradiations. The underlying mechanism was due to radio-resistance occurring in blood-forming tissues. In this study, we verified the existence of AR and further investigated residual damage in the hematopoietic system in surviving animals. Results showed that the priming low dose of X-rays could relieve the detrimental effects on the hematopoietic system. We observed both an improvement in the blood platelet count and the ratio of polychromatic erythrocytes (PCEs) to the sum of PCEs and normochromatic erythrocytes (NCEs) and a marked reduction of the incidences of micronucleated PCEs and micronucleated NCEs. These findings suggest that the priming low dose of low linear energy transfer (LET) X-rays induced a protective effect on the hematopoietic system, which may play an important role in both rescue from acute lethal damage (mouse killing) and prevention of late detrimental consequences (residual anhematopoiesis and delayed genotoxic effects) caused by exposure to a high challenge dose from low-LET (X-ray) or high-LET (carbon and neon ion) irradiations. These findings provide new knowledge of the characterization of the Yonezawa Effect by providing new insight into the mechanistic study of AR in vivo.


Asunto(s)
Adaptación Fisiológica/fisiología , Adaptación Fisiológica/efectos de la radiación , Sistema Hematopoyético/patología , Sistema Hematopoyético/efectos de la radiación , Tolerancia a Radiación/fisiología , Tolerancia a Radiación/efectos de la radiación , Tasa de Supervivencia , Animales , Relación Dosis-Respuesta en la Radiación , Femenino , Ratones , Ratones Endogámicos C57BL , Dosis de Radiación
5.
J Radiat Res ; 54(3): 409-18, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23230241

RESUMEN

The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays.


Asunto(s)
Desarrollo Embrionario/fisiología , Desarrollo Embrionario/efectos de la radiación , Células Epidérmicas , Epidermis/embriología , Iones Pesados , Melanocitos/citología , Melanocitos/efectos de la radiación , Animales , Diferenciación Celular/efectos de la radiación , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Epidermis/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Dosis de Radiación
6.
Birth Defects Res B Dev Reprod Toxicol ; 95(6): 379-85, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23109298

RESUMEN

BACKGROUND: Adaptive response (AR) of low linear energy transfer (LET) irradiations for protection against teratogenesis induced by high LET irradiations is not well documented. In this study, induction of AR by X-rays against teratogenesis induced by accelerated heavy ions was examined in fetal mice. METHODS: Irradiations of pregnant C57BL/6J mice were performed by delivering a priming low dose from X-rays at 0.05 or 0.30 Gy on gestation day 11 followed one day later by a challenge high dose from either X-rays or accelerated heavy ions. Monoenergetic beams of carbon, neon, silicon, and iron with the LET values of about 15, 30, 55, and 200 keV/µm, respectively, were examined. Significant suppression of teratogenic effects (fetal death, malformation of live fetuses, or low body weight) was used as the endpoint for judgment of a successful AR induction. RESULTS: Existence of AR induced by low-LET X-rays against teratogenic effect induced by high-LET accelerated heavy ions was demonstrated. The priming low dose of X-rays significantly reduced the occurrence of prenatal fetal death, malformation, and/or low body weight induced by the challenge high dose from either X-rays or accelerated heavy ions of carbon, neon or silicon but not iron particles. CONCLUSIONS: Successful AR induction appears to be a radiation quality event, depending on the LET value and/or the particle species of the challenge irradiations. These findings would provide a new insight into the study on radiation-induced AR in utero.


Asunto(s)
Anomalías Inducidas por Radiación/etiología , Adaptación Fisiológica/efectos de la radiación , Iones Pesados/efectos adversos , Transferencia Lineal de Energía , Tolerancia a Radiación/efectos de la radiación , Animales , Carbono/efectos adversos , Relación Dosis-Respuesta en la Radiación , Femenino , Muerte Fetal , Desarrollo Fetal/efectos de la radiación , Peso Fetal/efectos de la radiación , Feto/efectos de la radiación , Hierro/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Neón/efectos adversos , Embarazo , Tolerancia a Radiación/fisiología , Radiación Ionizante , Silicio/efectos adversos , Rayos X
7.
Zoolog Sci ; 28(6): 389-96, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21627448

RESUMEN

The effects of low-dose γ-rays on the embryonic development of animal cells are not well studied. The mouse melanocyte is a good model to study the effects of low-dose γ-rays on the development of animal cells, as it possesses visible pigment (melanin) as a differentiation marker. The aim of this study is to investigate in detail the effects of low-dose γ-rays on embryonic development of mouse melanoblasts and melanocytes in the epidermis and hair bulbs at cellular level. Pregnant females of C57BL/10J mice at nine days of gestation were whole-body irradiated with a single acute dose of γrays (0.1, 0.25, 0.5, and 0.75 Gy), and the effects of γ-rays were studied by scoring changes in the development of epidermal melanoblasts and melanocytes, hair follicles, and hair bulb melanocytes at 18 days in gestation. The number of epidermal melanoblasts and melanocytes, hair follicles, and hair bulb melanocytes in the dorsal and ventral skins was markedly decreased even at 0.1 Gy-treated embryos (P < 0.001), and gradually decreased as dose increased. The effects on the ventral skin were greater than those on the dorsal skin. The dramatic reduction in the number of melanocytes compared to melanoblasts was observed in the ventral skin, but not in the dorsal skin. These results suggest that low-dose γ-rays provoke the death of melanoblasts and melanocytes, or inhibit the proliferation and differentiation of melanoblasts and melanocytes, even at the low dose.


Asunto(s)
Células Epidérmicas , Epidermis/efectos de la radiación , Rayos gamma , Cabello/efectos de la radiación , Melanocitos/citología , Melanocitos/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Femenino , Ratones , Embarazo
8.
J Radiat Res ; 52(3): 278-86, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21343674

RESUMEN

Effects of prenatal low-dose irradiations of heavy ions on the postnatal development of mice and of melanocytes have not been well studied. Pregnant females of C57BL/10J mice were irradiated whole-body at 9 days of gestation with a single acute dose of γ-rays, silicon (Si, 57 keV/µm), argon (Ar, 100 keV/µm) and iron (Fe, 220 keV/µm) ions. The effects were studied by scoring changes in the postnatal development of mice as well as in the pigmentation of cutaneous coats and tail-tips of their offspring 22 days after birth. The survival to day 22 decreased from the offspring exposed to 0.4 Gy of argon and iron ions and to 0.75 Gy of silicon ions. White spots were found in the mid-ventrum and tail-tips of irradiated offspring. The frequency and size of the white spots in the mid-ventrum in mice exposed to silicon, argon and iron ions were greater than those of γ-rays. Even in the low dose (0.1 Gy), γ-rays and heavy ions increased the frequency of the ventral spots. The RBE estimated by the frequency of the ventral spots was 2.3 (Si), 3.1 (Ar) and 4.5 (Fe). These results suggest that prenatal exposure to heavy ions possesses a greater effect on the postnatal development of mice as well as melanocyte development than does exposure to γ-rays.


Asunto(s)
Iones Pesados , Melanocitos/efectos de la radiación , Trastornos de la Pigmentación/fisiopatología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Traumatismos por Radiación/fisiopatología , Animales , Animales Recién Nacidos , Relación Dosis-Respuesta en la Radiación , Femenino , Masculino , Melanocitos/patología , Ratones , Trastornos de la Pigmentación/etiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Dosis de Radiación , Traumatismos por Radiación/etiología
9.
Radiat Res ; 174(4): 532-6, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20726713

RESUMEN

Induction of an adaptive response by priming X rays in combination with challenge irradiations from high-LET accelerated heavy ions was attempted in young adult female C57BL/6J Jms mice using 30-day survival after the challenge irradiations as an index. Three kinds of accelerated heavy ions from monoenergetic beams of carbon, silicon and iron ions with LETs of about 15, 55 and 200 keV/µm, respectively, were examined. A priming low dose of 0.50 Gy X rays in combination with a challenging dose of 7.50 Gy was used in the animals serving as a positive control group to confirm the successful induction of an adaptive response. The priming low dose of 0.50 Gy X rays was also used in combination with accelerated heavy ions. The priming low dose of X rays significantly reduced the mortality from the high challenge doses of carbon or silicon particles but not from iron particles. These results indicate that an adaptive response could be induced by priming low-LET X rays in combination with subsequent challenge high-LET irradiations from certain kinds of accelerated heavy ions, and successful induction of an adaptive response would possibly be an event related to the LET and/or the type of heavy ions. This is the first time that the existence of an adaptive response induced by low-LET X rays against high-LET whole-body irradiation in mice has been demonstrated. These findings would provide new insight into the radiation-induced adaptive response in vivo.


Asunto(s)
Radioterapia de Iones Pesados , Transferencia Lineal de Energía , Tolerancia a Radiación/efectos de la radiación , Adaptación Fisiológica/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Femenino , Ratones , Ratones Endogámicos C57BL , Tolerancia a Radiación/fisiología , Irradiación Corporal Total , Rayos X
10.
J Radiat Res ; 50(5): 441-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19506344

RESUMEN

To study mechanisms which could be involved in the reverse dose rate effect observed during mutation induction after exposure to high LET radiation, synchronized mouse L5178Y cells were exposed to carbon 290 MeV/n beams with different LET values at the G2/M, G1, G1/S or S phases in the cell cycle. The frequency of Hprt-deficient (6-thioguanine-resistant) mutant induction was subsequently determined. The results showed that after exposure to high LET value radiation (50.8 and 76.5 keV/microm), maximum mutation frequencies were seen at the G2/M phase, but after exposure to lower LET radiation (13.3 keV/microm), the highest mutation frequencies were observed at the G1 phase. The higher LET beam always produced higher mutation frequencies in the G2/M phase than in the G1 phase, regardless of radiation dose. These results suggest that cells in the G2/M phase is hyper-sensitive for mutation induction from high LET radiation, but not to mutation induction from low LET radiation. Molecular analysis of mutation spectra showed that large deletions (which could include almost entire exons) of the mouse Hprt gene were most efficiently induced in G2/M cells irradiated with high LET radiation. These entire exon deletions were not as frequent in cells exposed to lower LET radiation. This suggests that inappropriate recombination repair might have occurred in response to condensed damage in condensed chromatin in the G2/M phase. In addition, by using a hyper-sensitive mutation detection system (GM06318-10 cells), a reverse dose-rate effect was clearly observed after exposure to carbon beams with higher LET values (66 keV/microm), but not after exposure to beams with lower LET values (13.3 keV/microm). Thus, G2/M sensitivity towards mutation induction, and the dependence on radiation LET values could both be major factors involved in the reverse dose rate effect produced by high LET radiation.


Asunto(s)
Ciclo Celular/efectos de la radiación , Leucemia/genética , Leucemia/patología , Transferencia Lineal de Energía , Mutagénesis/efectos de la radiación , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Ratones , Dosis de Radiación , Tolerancia a Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA