Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 11(8): 2820-2828, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35930594

RESUMEN

Histamine receptor 2 (HRH2) activation in the stomach results in gastric acid secretion, and HRH2 blockers are used for the treatment of peptidic ulcers and acid reflux. Over-the-counter HRH2 blockers carry a five-membered aromatic heterocycle, with two of them additionally carrying a tertiary amine that decomposes to N-nitrosodimethylamine, a human carcinogen. To discover a novel HRH2 blocker scaffold to serve in the development of next-generation HRH2 blockers, we developed an HRH2-based sensor in yeast by linking human HRH2 activation to cell luminescence. We used the HRH2-based sensor to screen a 403-member anti-infection chemical library and identified three HRH2 blockers, chlorquinaldol, chloroxine, and broxyquinoline, all sharing an 8-hydroxyquinoline scaffold, which is not found among known HRH2 antagonists. Critically, we validate their HRH2-blocking ability in mammalian cells. Molecular docking suggests that the HRH2 blockers bind the histamine binding pocket and structure-activity data point toward these blockers acting as competitive antagonists. Chloroxine and broxyquinoline are antimicrobials that can be found in the gastrointestinal tract at concentrations that would block HRH2, thus likely modulating gastric acid secretion. Taken together, this work demonstrates the utility of GPCR-based sensors for rapid drug discovery applications, identifies a novel HRH2 blocker scaffold, and provides further evidence that antimicrobials not only target the human microbiota but also the human host.


Asunto(s)
Fagocitosis , Receptores Histamínicos , Animales , Humanos , Mamíferos , Simulación del Acoplamiento Molecular , Oxiquinolina
2.
Biochemistry ; 58(16): 2160-2166, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30977365

RESUMEN

Olfactory receptors are ectopically expressed (exORs) in more than 16 different tissues. Studying the role of exORs is hindered by the lack of known ligands that activate these receptors. Of particular interest are exORs in the colon, the section of the gastrointestinal tract with the greatest diversity of microbiota where ORs may be participating in host-microbiome communication. Here, we leverage a G-protein-coupled receptor (GPCR)-based yeast sensor strain to generate sensors for seven ORs highly expressed in the colon. We screen the seven colon ORs against 57 chemicals likely to bind ORs in olfactory tissue. We successfully deorphanize two colon exORs for the first time, OR2T4 and OR10S1, and find alternative ligands for OR2A7. The same OR deorphanization workflow can be applied to the deorphanization of other ORs and GPCRs in general. Identification of ligands for OR2T4, OR10S1, and OR2A7 will enable the study of these ORs in the colon. Additionally, the colon OR-based sensors will enable the elucidation of endogenous colon metabolites that activate these receptors. Finally, deorphanization of OR2T4 and OR10S1 supports studies of the neuroscience of olfaction.


Asunto(s)
Colon/metabolismo , Receptores Odorantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Colon/microbiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ligandos , Microbiota , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/genética , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...