Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Environ Manage ; 356: 120510, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490009

RESUMEN

Continuous effluent quality prediction in wastewater treatment processes is crucial to proactively reduce the risks to the environment and human health. However, wastewater treatment is an extremely complex process controlled by several uncertain, interdependent, and sometimes poorly characterized physico-chemical-biological process parameters. In addition, there are substantial spatiotemporal variations, uncertainties, and high non-linear interactions among the water quality parameters and process variables involved in the treatment process. Such complexities hinder efficient monitoring, operation, and management of wastewater treatment plants under normal and abnormal conditions. Typical mathematical and statistical tools most often fail to capture such complex interrelationships, and therefore data-driven techniques offer an attractive solution to effectively quantify the performance of wastewater treatment plants. Although several previous studies focused on applying regression-based data-driven models (e.g., artificial neural network) to predict some wastewater treatment effluent parameters, most of these studies employed a limited number of input variables to predict only one or two parameters characterizing the effluent quality (e.g., chemical oxygen demand (COD) and/or suspended solids (SS)). Harnessing the power of Artificial Intelligence (AI), the current study proposes multi-gene genetic programming (MGGP)-based models, using a dataset obtained from an operational wastewater treatment plant, deploying membrane aerated biofilm reactor, to predict the filtrated COD, ammonia (NH4), and SS concentrations along with the carbon-to-nitrogen ratio (C/N) within the effluent. Input features included a set of process variables characterizing the influent quality (e.g., filtered COD, NH4, and SS concentrations), water physics and chemistry parameters (e.g., temperature and pH), and operation conditions (e.g., applied air pressure). The developed MGGP-based models accurately reproduced the observations of the four output variables with correlation coefficient values that ranged between 0.98 and 0.99 during training and between 0.96 and 0.99 during testing, reflecting the power of the developed models in predicting the quality of the effluent from the treatment system. Interpretability analyses were subsequently deployed to confirm the intuitive understanding of input-output interrelations and to identify the governing parameters of the treatment process. The developed MGGP-based models can facilitate the AI-driven monitoring and management of wastewater treatment plants through devising optimal rapid operation and control schemes and assisting the plants' operators in maintaining proper performance of the plants under various normal and disruptive operational conditions.


Asunto(s)
Inteligencia Artificial , Purificación del Agua , Humanos , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Redes Neurales de la Computación , Análisis de la Demanda Biológica de Oxígeno
3.
J Healthc Inform Res ; 7(1): 59-83, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36910915

RESUMEN

The recent advances in artificial intelligence have led to the rapid development of computer-aided skin cancer diagnosis applications that perform on par with dermatologists. However, the black-box nature of such applications makes it difficult for physicians to trust the predicted decisions, subsequently preventing the proliferation of such applications in the clinical workflow. In this work, we aim to address this challenge by developing an interpretable skin cancer diagnosis approach using clinical images. Accordingly, a skin cancer diagnosis model consolidated with two interpretability methods is developed. The first interpretability method integrates skin cancer diagnosis domain knowledge, characterized by a skin lesion taxonomy, into model development, whereas the other method focuses on visualizing the decision-making process by highlighting the dominant of interest regions of skin lesion images. The proposed model is trained and validated on clinical images since the latter are easily obtainable by non-specialist healthcare providers. The results demonstrate the effectiveness of incorporating lesion taxonomy in improving model classification accuracy, where our model can predict the skin lesion origin as melanocytic or non-melanocytic with an accuracy of 87%, predict lesion malignancy with 77% accuracy, and provide disease diagnosis with an accuracy of 71%. In addition, the implemented interpretability methods assist understand the model's decision-making process and detecting misdiagnoses. This work is a step toward achieving interpretability in skin cancer diagnosis using clinical images. The developed approach can assist general practitioners to make an early diagnosis, thus reducing the redundant referrals that expert dermatologists receive for further investigations.

4.
JMIR Res Protoc ; 11(3): e34896, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34983017

RESUMEN

BACKGROUND: The paucity of dark skin images in dermatological textbooks and atlases is a reflection of racial injustice in medicine. The underrepresentation of dark skin images makes diagnosing skin pathology in people of color challenging. For conditions such as skin cancer, in which early diagnosis makes a difference between life and death, people of color have worse prognoses and lower survival rates than people with lighter skin tones as a result of delayed or incorrect diagnoses. Recent advances in artificial intelligence, such as deep learning, offer a potential solution that can be achieved by diversifying the mostly light-skin image repositories through generating images for darker skin tones. Thus, facilitating the development of inclusive cancer early diagnosis systems that are trained and tested on diverse images that truly represent human skin tones. OBJECTIVE: We aim to develop and evaluate an artificial intelligence-based skin cancer early detection system for all skin tones using clinical images. METHODS: This study consists of four phases: (1) Publicly available skin image repositories will be analyzed to quantify the underrepresentation of darker skin tones, (2) Images will be generated for the underrepresented skin tones, (3) Generated images will be extensively evaluated for realism and disease presentation with quantitative image quality assessment as well as qualitative human expert and nonexpert ratings, and (4) The images will be utilized with available light-skin images to develop a robust skin cancer early detection model. RESULTS: This study started in September 2020. The first phase of quantifying the underrepresentation of darker skin tones was completed in March 2021. The second phase of generating the images is in progress and will be completed by March 2022. The third phase is expected to be completed by May 2022, and the final phase is expected to be completed by September 2022. CONCLUSIONS: This work is the first step toward expanding skin tone diversity in existing image databases to address the current gap in the underrepresentation of darker skin tones. Once validated, the image bank will be a valuable resource that can potentially be utilized in physician education and in research applications. Furthermore, generated images are expected to improve the generalizability of skin cancer detection. When completed, the model will assist family physicians and general practitioners in evaluating skin lesion severity and in efficient triaging for referral to expert dermatologists. In addition, the model can assist dermatologists in diagnosing skin lesions. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/34896.

5.
J Colloid Interface Sci ; 589: 597-604, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33515975

RESUMEN

OBJECTIVES: Irreversible colloid deposition in groundwater-saturated fractures is typically modeled using a lumped deposition coefficient (κ) that reflects the system physiochemical conditions. A mathematical relationship between this coefficient and the physicochemical conditions controlling deposition has not yet been defined in the literature; thus, κ is typically fitted using experimental observations. This research develops, for the first time, an analytical relationship between κ and the fraction of colloids retained in single fractures (Fr). This relationship could be subsequently integrated with available models relating Fr to the system's physicochemical properties to develop an explicit mathematical relationship between κ and these properties. METHOD: The Fr-κ analytical relationship was developed through conceptualizing irreversible deposition as first-order decay, as both lead to permanent mass loss, and coupling this with the advection-dispersion equation. The model estimates of colloid deposition were compared to observations from laboratory-scale colloid tracer experiments. A variance-based global sensitivity analysis was applied to identify the parameters controlling deposition. FINDINGS: The analytical relationship efficiently replicated the experimental observations, and the global sensitivity analysis revealed that colloid deposition variability is controlled by fracture length, aperture size, and deposition coefficient; this supports the accepted understanding that colloid deposition is controlled by the system's physicochemical properties.

6.
Water Sci Technol ; 80(2): 243-253, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31537760

RESUMEN

Wastewater flow forecasting is key for proper management of wastewater treatment plants (WWTPs). However, to predict the amount of incoming wastewater in WWTPs, wastewater engineers face challenges arising from numerous complexities and uncertainties, such as the nonlinear precipitation-runoff relationships in combined sewer systems, unpredictability due to aging infrastructure, and frequently inconsistent data quality. To address such challenges, a time series analysis model (i.e., the autoregressive integrated moving average, ARIMA) and an artificial neural network model (i.e., the multilayer perceptron neural network, MLPNN) were developed for predicting wastewater inflow. A case study of the Barrie Wastewater Treatment Facility in Barrie, Canada, was carried out to demonstrate the performance of the proposed models. Fifteen-minute flow data over a period of 1 year were collected, and the resampled daily flow data were used to train and validate the developed models. The model performances were examined using root mean square error, mean absolute percentage error, coefficient of determination, and Nash-Sutcliffe efficiency. The results indicate that both models provided reliable forecasts, while ARIMA showed a slightly better performance than MLPNN in this case study. The proposed models can provide useful decision support for the optimization and management of WWTPs.


Asunto(s)
Modelos Estadísticos , Redes Neurales de la Computación , Aguas Residuales/estadística & datos numéricos , Movimientos del Agua , Canadá , Predicción
7.
Ground Water ; 57(5): 693-703, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30653668

RESUMEN

Understanding the behavior of colloids in groundwater is critical as some are pathogenic while others may facilitate or inhibit the transport of dissolved contaminants. Colloid behavior in saturated fractured aquifers is governed by the physical and chemical properties of the groundwater-particle-fracture system. The interaction between these properties is nonlinear, and there is a need for a mathematical model describing the relationship between them to advance the mechanistic understanding of colloid transport in fractures and facilitate modeling in fractured environments. This paper coupled genetic programming and linear regression within a multigene genetic programming framework to develop a robust mathematical model describing the relationship between colloid retention in fractures and the physical and chemical parameters that describe the system. The data employed for model development and validation were collected from a series of 75 laboratory-scale colloid tracer experiments conducted under a range of conditions in three laboratory-induced discrete dolomite fractures and their epoxy replicas. The model sufficiently reproduced the observed data with coefficients of determination (R2 ) of 0.92 and 0.80 for model development and validation, respectively. A cross-validation demonstrated the model generality to 86% of the observed data. A variance-based global sensitivity analysis confirmed that attachment is the primary retention mechanism in the systems employed in this work. The model developed in this study provides a tool describing colloid retention in factures, which furthers the understanding of groundwater-particle-fracture system conditions contributing to the retention of colloids and can aid in the design of groundwater remediation strategies and development of groundwater management plans.


Asunto(s)
Agua Subterránea , Coloides , Modelos Teóricos , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA