Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Phys Eng Express ; 10(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118183

RESUMEN

Intrapartum fetal hypoxia is related to long-term morbidity and mortality of the fetus and the mother. Fetal surveillance is extremely important to minimize the adverse outcomes arising from fetal hypoxia during labour. Several methods have been used in current clinical practice to monitor fetal well-being. For instance, biophysical technologies including cardiotocography, ST-analysis adjunct to cardiotocography, and Doppler ultrasound are used for intrapartum fetal monitoring. However, these technologies result in a high false-positive rate and increased obstetric interventions during labour. Alternatively, biochemical-based technologies including fetal scalp blood sampling and fetal pulse oximetry are used to identify metabolic acidosis and oxygen deprivation resulting from fetal hypoxia. These technologies neither improve clinical outcomes nor reduce unnecessary interventions during labour. Also, there is a need to link the physiological changes during fetal hypoxia to fetal monitoring technologies. The objective of this article is to assess the clinical background of fetal hypoxia and to review existing monitoring technologies for the detection and monitoring of fetal hypoxia. A comprehensive review has been made to predict fetal hypoxia using computational and machine-learning algorithms. The detection of more specific biomarkers or new sensing technologies is also reviewed which may help in the enhancement of the reliability of continuous fetal monitoring and may result in the accurate detection of intrapartum fetal hypoxia.


Asunto(s)
Hipoxia Fetal , Trabajo de Parto , Embarazo , Femenino , Humanos , Hipoxia Fetal/diagnóstico , Reproducibilidad de los Resultados , Monitoreo Fetal/métodos , Cardiotocografía/métodos
2.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36236269

RESUMEN

The electrical properties of many biological tissues are freely available from the INRC and the IT'IS databases. However, particularly in lower frequency ranges, few studies have investigated the optimal measurement protocol or the key confounders that need to be controlled, monitored, and reported. However, preliminary work suggests that the contact force of the measurement probe on the tissue sample can affect the measurements. The aim of this paper is to investigate the conductivity change due to the probe contact force in detail. Twenty ex vivo bovine heart samples are used, and conductivity measurements are taken in the Left Atrial Appendage, a common target for medical device developments. The conductivity measurements reported in this work (between 0.14 S/m and 0.24 S/m) align with the literature. The average conductivity is observed to change by -21% as the contact force increases from 2 N to 10 N. In contrast, in conditions where the fluid concentration in the measurement area is expected to be lower, very small changes are observed (less than 2.5%). These results suggest that the LAA conductivity is affected by the contact force due to the fluid concentration in the tissue. This work suggests that contact force should be controlled for in all future experiments.


Asunto(s)
Apéndice Atrial , Animales , Bovinos , Conductividad Eléctrica , Fenómenos Mecánicos
3.
Sensors (Basel) ; 21(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34884050

RESUMEN

Microwave breast imaging has seen increasing use in clinical investigations in the past decade with over eight systems having being trialled with patients. The majority of systems use radar-based algorithms to reconstruct the image shown to the clinician which requires an estimate of the dielectric properties of the breast to synthetically focus signals to reconstruct the image. Both simulated and experimental studies have shown that, even in simplified scenarios, misestimation of the dielectric properties can impair both the image quality and tumour detection. Many methods have been proposed to address the issue of the estimation of dielectric properties, but few have been tested with patient images. In this work, a leading approach for dielectric properties estimation based on the computation of many candidate images for microwave breast imaging is analysed with patient images for the first time. Using five clinical case studies of both healthy breasts and breasts with abnormalities, the advantages and disadvantages of computational patient-specific microwave breast image reconstruction are highlighted.


Asunto(s)
Neoplasias de la Mama , Microondas , Algoritmos , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Radar
4.
Med Biol Eng Comput ; 59(4): 925-936, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33783696

RESUMEN

The dielectric properties of bones are found to be influenced by the demineralisation of bones. Therefore, microwave imaging (MWI) can be used to monitor in vivo dielectric properties of human bones and hence aid in the monitoring of osteoporosis. This paper presents the feasibility analysis of the MWI device for monitoring osteoporosis. Firstly, the dielectric properties of tissues present in the human heel are analysed. Secondly, a transmission line (TL) formalism approach is adopted to examine the feasible frequency band and the matching medium for MWI of trabecular bone. Finally, simplified numerical modelling of the human heel was set to monitor the penetration of E-field, the received signal strength, and the power loss in a numerical model of the human heel. Based on the TL formalism approach, 0.6-1.9-GHz frequency band is found to feasible for bone imaging purpose. The relative permittivity of the matching medium can be chosen between 15 and 40. The average percentage difference between the received signal for feasible and inconvenient frequency band was found to be 82%. The findings based on the dielectric contrast of tissues in the heel, the feasible frequency band, and the finite difference time domain simulations support the development of an MWI prototype for monitoring osteoporosis.


Asunto(s)
Imágenes de Microonda , Osteoporosis , Huesos/diagnóstico por imagen , Estudios de Factibilidad , Humanos , Microondas , Osteoporosis/diagnóstico por imagen
5.
Sensors (Basel) ; 20(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167562

RESUMEN

Microwave tomography (MWT) can be used as an alternative modality for monitoring human bone health. Studies have found a significant dielectric contrast between healthy and diseased human trabecular bones. A set of diverse bone phantoms were developed based on single-pole Debye parameters of osteoporotic and osteoarthritis human trabecular bones. The bone phantoms were designed as a two-layered circular structure, where the outer layer mimics the dielectric properties of the cortical bone and the inner layer mimics the dielectric properties of the trabecular bone. The electromagnetic (EM) inverse scattering problem was solved using a distorted Born iterative method (DBIM). A compressed sensing-based linear inversion approach referred to as iterative method with adaptive thresholding for compressed sensing (IMATCS) has been employed for solving the underdetermined set of linear equations at each DBIM iteration. To overcome the challenges posed by the ill-posedness of the EM inverse scattering problem, the L2-based regularization approach was adopted in the amalgamation of the IMATCS approach. The simulation results showed that osteoporotic and osteoarthritis bones can be differentiated based on the reconstructed dielectric properties even for low values of the signal-to-noise ratio. These results show that the adopted approach can be used to monitor bone health based on the reconstructed dielectric properties.


Asunto(s)
Densidad Ósea , Huesos/diagnóstico por imagen , Imágenes de Microonda , Fantasmas de Imagen , Algoritmos , Humanos
6.
Med Eng Phys ; 78: 21-28, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32037281

RESUMEN

The objective of this study is to determine whether in vitro dielectric properties of human trabecular bones, can distinguish between osteoporotic and osteoarthritis patients' bone samples. Specifically this study enlightens intra-patient variation of trabecular bone microarchitecture and dielectric properties, inter-disease comparison of bone dielectric properties, and finally establishes the correlation to traditional bone histomorphometry parameter (bone volume fraction) for diseased bone tissue. Bone cores were obtained from osteoporotic and osteoarthritis patients (n = 12). These were scanned using microCT to examine bone volume fraction. An open-ended coaxial probe measurement technique was employed to measure dielectric properties over the 0.5 - 8.5 GHz frequency range. The dielectric properties of osteoarthritis patients are significantly higher than osteoporotic patients; with an increase of 41% and 45% for relative permittivity and conductivity respectively. The dielectric properties within each patient vary significantly, variation in relative permittivity and conductivity was found to be greater than 25% and 1.4% respectively. A weak correlation (r  = â€…0.5) is observed between relative permittivity and bone volume fraction. Osteoporotic and osteoarthritis bones can be differentiated based on difference of dielectric properties. Although these do not correlate strongly to bone volume fraction, it should be noted that bone volume fraction is a poor predictor of fracture risk. The dielectric properties of bones are found to be influenced by mineralization levels of bones. Therefore, dielectric properties of bones may have potential as a diagnostic measure of osteoporosis.


Asunto(s)
Hueso Esponjoso , Microondas , Hueso Esponjoso/diagnóstico por imagen , Impedancia Eléctrica , Humanos , Osteoartritis/diagnóstico por imagen , Osteoporosis/diagnóstico por imagen , Tomografía Computarizada por Rayos X
7.
J Alzheimers Dis ; 70(1): 171-185, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156180

RESUMEN

BACKGROUND: It is known that proteins associated with Alzheimer's disease (AD) pathogenesis are significantly reduced by 40 Hz entrainment in mice. If this were to translate to humans, verifying that such a light stimulus can induce a 40 Hz entrainment response in humans and harnessing insights from these case studies could be one step in the development of a multisensory device to prevent and treat AD. OBJECTIVE: Verify the inducement of a 40 Hz response in the human brain by a 40 Hz light stimulus and obtain insights that could potentially aid in the development of a multisensory device for the prevention and treatment of AD. METHODS: Electroencephalographic brain activity was recorded simultaneously with application of stimulus at different frequencies and intensities. Power spectral densities were analyzed. RESULTS: Entrainment to visual stimuli occurred with the largest response at 40 Hz. The high intensity 40 Hz stimulus caused widespread entrainment. The number of electrodes demonstrating entrainment increased with increasing light intensity. Largest amplitudes for the high intensity 40 Hz stimulus were consistently found at the primary visual cortex. There was a harmonic effect at double the frequency for the 40 Hz stimulus. An eyes-open protocol caused more entrainment than an eyes-closed protocol. CONCLUSION: It was possible to induce widespread entrainment using a 40 Hz light stimulus in this sample cohort. Insights gleaned from these case studies could potentially aid in the development of a multisensory medical device to prevent and treat AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Ritmo Gamma/fisiología , Corteza Visual/fisiopatología , Adulto , Electroencefalografía , Humanos , Luz , Estimulación Luminosa
8.
Biomed Phys Eng Express ; 5(2)2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34247151

RESUMEN

The dielectric properties are key parameters that quantify the interaction between electromagnetic waves and human biological tissues. In particular, the development of electromagnetic-based medical technologies rely on knowledge of the dielectric properties of bone, specifically for applications such as electrical stimulation and bone health monitoring. Electrical stimulation is used in clinics to promote the healing of bone fractures, treating non-unions, congenital pseudarthrosis, bone regeneration and during bone implant procedures. The response of the bone to any external electrical stimulation is governed by the dielectric properties of the bone, which vary with the applied frequency of the stimuli. Bone mineral density is considered a key indicator of osteoporosis diagnosis, and is assumed to be related to the dielectric properties of the bone. Therefore, dielectric properties of bones may potentially be used to diagnose osteoporosis. The bone dielectric properties can be assessed non-invasively for bone health monitoring. Several research studies have reported dielectric properties of cortical and trabecular bones in recent literature. Since dielectric properties of bone determine the response of the tissue to therapies, it is important to compile and analyze the reported dielectric data in order to have a thorough understanding of these properties. It is established from the literature that the low frequency (10 Hz-1 GHz) dielectric properties of bone are particularly important in diagnostic applications, as the correlation between the dielectric properties and bone mineral density is more significant than at higher frequencies. In this paper, the low frequency dielectric properties of the bone reported in the literature are compiled and quantitatively analysed. The results suggest that there is a significant inter- and intra-species variation in the reported dielectric data from human, bovine, porcine, and rat bone tissues. Moreover, the relationship between the dielectric properties and bone mineral density is inconsistent across the various studies, indicating that further research in this area is needed.

9.
Med Biol Eng Comput ; 57(1): 1-13, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30159660

RESUMEN

Osteoporosis is one of the most common diseases that leads to bone fractures. Dual-energy X-ray absorptiometry is currently employed to measure the bone mineral density and to diagnose osteoporosis. Alternatively, the dielectric properties of bones are found to be influenced by bone mineral density; hence, dielectric properties of bones may potentially be used to diagnose osteoporosis. Microwave tomographic imaging is currently in development to potentially measure in vivo dielectric properties of bone. Therefore, the foci of this work are to summarize all available dielectric data of bone in the microwave frequency range and to analyze the confounders that may have resulted in variations in reported data. This study also compares the relationship between the dielectric properties and bone quality reported across different studies. The review suggests that variations exist in the dielectric properties of bone and the relationship between bone volume fraction and dielectric properties is in agreement across all studies. Conversely, the evidence of a relationship between bone mineral density and dielectric properties is inconsistent across the studies. This summary of dielectric data of bone along with a comparison of the relationship between the dielectric properties and bone quality will accelerate the development of microwave tomographic imaging devices for the monitoring of osteoporosis. Graphical abstract ᅟ.


Asunto(s)
Huesos/fisiopatología , Electricidad , Osteoporosis/diagnóstico , Osteoporosis/fisiopatología , Animales , Densidad Ósea , Huesos/patología , Conductividad Eléctrica , Humanos
10.
Sensors (Basel) ; 18(6)2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29882893

RESUMEN

Confocal Microwave Imaging (CMI) for the early detection of breast cancer has been under development for over two decades and is currently going through early-phase clinical evaluation. The image reconstruction algorithm is a key signal processing component of any CMI-based breast imaging system and impacts the efficacy of CMI in detecting breast cancer. Several image reconstruction algorithms for CMI have been developed since its inception. These image reconstruction algorithms have been previously evaluated and compared, using both numerical and physical breast models, and healthy volunteer data. However, no study has been performed to evaluate the performance of image reconstruction algorithms using clinical patient data. In this study, a variety of imaging algorithms, including both data-independent and data-adaptive algorithms, were evaluated using data obtained from a small-scale patient study conducted at the University of Calgary. Six imaging algorithms were applied to reconstruct 3D images of five clinical patients. Reconstructed images for each algorithm and each patient were compared to the available clinical reports, in terms of abnormality detection and localisation. The imaging quality of each algorithm was evaluated using appropriate quality metrics. The results of the conventional Delay-and-Sum algorithm and the Delay-Multiply-and-Sum (DMAS) algorithm were found to be consistent with the clinical information, with DMAS producing better quality images compared to all other algorithms.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Microondas , Pacientes , Procesamiento de Señales Asistido por Computador , Humanos
11.
Sensors (Basel) ; 17(12)2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29211018

RESUMEN

Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.


Asunto(s)
Microondas , Algoritmos , Mama , Neoplasias de la Mama , Humanos , Fantasmas de Imagen , Radar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA