Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-22547278

RESUMEN

Automatic quantification of regional left ventricular deformation in volumetric ultrasound data remains challenging. Many methods have been proposed to extract myocardial motion, including techniques using block matching, phase-based correlation, differential optical flow methods, and image registration. Our lab previously presented an approach based on elastic registration of subsequent volumes using a B-spline representation of the underlying transformation field. Encouraging results were obtained for the assessment of global left ventricular function, but a thorough validation on a regional level was still lacking. For this purpose, univentricular thick-walled cardiac phantoms were deformed in an experimental setup to locally assess strain accuracy against sonomicrometry as a reference method and to assess whether regions containing stiff inclusions could be detected. Our method showed good correlations against sonomicrometry: r(2) was 0.96, 0.92, and 0.84 for the radial (ε(RR)), longitudinal (ε(LL)), and circumferential (ε(CC)) strain, respectively. Absolute strain errors and strain drift were low for ε(LL) (absolute mean error: 2.42%, drift: -1.05%) and ε(CC) (error: 1.79%, drift: -1.33%) and slightly higher for ε(RR) (error: 3.37%, drift: 3.05%). The discriminative power of our methodology was adequate to resolve full transmural inclusions down to 17 mm in diameter, although the inclusion-to-surrounding tissue stiffness ratio was required to be at least 5:2 (absolute difference of 39.42 kPa). When the inclusion-to-surrounding tissue stiffness ratio was lowered to approximately 2:1 (absolute difference of 22.63 kPa), only larger inclusions down to 27 mm in diameter could still be identified. Radial strain was found not to be reliable in identifying dysfunctional regions.


Asunto(s)
Ecocardiografía Tridimensional/instrumentación , Ecocardiografía Tridimensional/métodos , Corazón/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Humanos , Modelos Biológicos , Reproducibilidad de los Resultados
2.
IEEE Trans Med Imaging ; 29(3): 868-78, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20199921

RESUMEN

Magnetic resonance (MR) cine images are often used to clinically assess left ventricular cardiac function. In a typical study, multiple 2-D long axis (LA) and short axis (SA) cine images are acquired, each in a different breath-hold. Differences in lung volume during breath-hold and overall patient motion distort spatial alignment of the images thus complicating spatial integration of all image data in three dimensions. We present a fully automatic postprocessing approach to correct these slice misalignments. The approach is based on the constrained optimization of the intensity similarity of intersecting image lines after the automatic definition of a region of interest. It uses all views and all time frames simultaneously. Our method models both in-plane and out-of-plane translations and full 3-D rotations, can be applied retrospectively and does not require a cardiac wall segmentation. The method was validated on both healthy volunteer and patient data with simulated misalignments, as well as on clinical multibreath-hold patient data. For the simulated data, subpixel accuracy could be obtained using translational correction. The possibilities and limitations of rotational correction were investigated and discussed. For the clinical multibreath-hold patient data sets, the median discrepancy between manual SA and LA contours was reduced from 2.83 to 1.33 mm using the proposed correction method. We have also shown the usefulness of the correction method for functional analysis on clinical image data. The same clinical multibreath-hold data sets were resegmented after positional correction, taking newly available complementary information of intersecting slices into account, further reducing the median discrepancy to 0.43 mm. This is due to the integration of the 2-D slice information into 3-D space.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Función Ventricular Izquierda/fisiología , Algoritmos , Simulación por Computador , Humanos , Pulmón/anatomía & histología , Pulmón/fisiología , Modelos Cardiovasculares , Movimiento (Física) , Reproducibilidad de los Resultados , Respiración , Estadísticas no Paramétricas
3.
IEEE Trans Med Imaging ; 27(11): 1580-91, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18955174

RESUMEN

Current ultrasound methods for measuring myocardial strain are often limited to measurements in one or two dimensions. Cardiac motion and deformation however are truly 3-D. With the introduction of matrix transducer technology, 3-D ultrasound imaging of the heart has become feasible but suffers from low temporal and spatial resolution, making 3-D strain estimation challenging. In this paper, it is shown that automatic intensity-based spatio-temporal elastic registration of currently available 3-D volumetric ultrasound data sets can be used to measure the full 3-D strain tensor. The method was validated using simulated 3-D ultrasound data sets of the left ventricle (LV). Three types of data sets were simulated: a normal and symmetric LV with different heart rates, a more realistic asymmetric normal LV and an infarcted LV. The absolute error in the estimated displacement was between 0.47 +/-0.23 and 1.00 +/-0.59 mm, depending on heart rate and amount of background noise. The absolute error on the estimated strain was 9%-21% for the radial strain and 1%-4% for the longitudinal and circumferential strains. No large differences were found between the different types of data sets. The shape of the strain curves was estimated properly and the position of the infarcts could be identified correctly. Preliminary results on clinical data taken in vivo from three healthy volunteers and one patient with an apical aneurism confirmed these findings in a qualitative manner as the strain curves obtained with the proposed method have an amplitude and shape similar to what could be expected.


Asunto(s)
Ecocardiografía Tridimensional/métodos , Contracción Miocárdica/fisiología , Técnica de Sustracción , Artefactos , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Humanos , Movimiento , Infarto del Miocardio/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas/métodos , Fantasmas de Imagen , Proyectos de Investigación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA