Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 89(18): 13768-13773, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39258625

RESUMEN

A 2-phenyl-3-difluoromethoxy-pyridinyl moiety features in potent phosphodiesterase 4D inhibitors that are considered to be candidate radiotracers for positron emission tomography if they are labeled with fluorine-18. Fluorine-18 could be installed as desired at the 3'-phenyl position with acridinium-mediated photoredox radiodeoxyfluorination in homologues bearing variously substituted 3'-aryloxy groups. However, a distal 3-difluoromethoxide (-OCHF2) group strongly competes as a leaving group, especially when an electron-deficient aryloxy group is present at position 3'. A yield of up to 50% may occur without observable 19F for 18F exchange.


Asunto(s)
Radioisótopos de Flúor , Oxidación-Reducción , Piridinas , Piridinas/química , Piridinas/síntesis química , Radioisótopos de Flúor/química , Estructura Molecular , Procesos Fotoquímicos , Halogenación , Hidrocarburos Fluorados/química , Hidrocarburos Fluorados/síntesis química
2.
J Am Soc Mass Spectrom ; 35(9): 2237-2247, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39158841

RESUMEN

Multiply charged ions produced by electrospray ionization (ESI) of heterogeneous mixtures of macromolecular analytes under native conditions are typically confined to relatively narrow ranges of mass-to-charge (m/z) ratio, often with extensive overlap. This scenario makes charge and mass assignments extremely challenging, particularly when individual charge states are unresolved. An ion/ion reaction strategy involving multiply charged ion attachment (MIA) to the mixture components in a narrow range of m/z can facilitate charge and mass assignment. In MIA operation, multiply charged reagent ions are attached to the analyte ions of opposite polarity to provide large m/z displacements resulting from both large changes in mass and charge. However, charge reduction of the high m/z ions initially generated under native ESI conditions requires the ability to isolate high m/z ions and to analyze even higher m/z product ions. Digital ion trap (DIT) operation offers means for both high m/z ion isolation and high m/z mass analysis, in addition to providing conditions for the reaction of oppositely charged ions. The feasibility of conducting MIA experiments in a DIT that takes advantage of high m/z ion operation is demonstrated here using a tandem 2D-3D DIT instrument. Proof-of-concept MIA experiments with cations derived from ß-galactosidase using the 20- charge state of human serum immunoglobulin G (IgG, ∼149 kDa) as the reagent anion are described. MIA experiments involving mixtures of ions derived from the E. coli. ribosome are also described. For example, three components in a mixture of 70S particles (>2.2 MDa) were resolved and assigned with masses and charges following an MIA experiment involving the 20- charge state of human serum IgG.


Asunto(s)
Iones , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Iones/química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/análisis , beta-Galactosidasa/química , beta-Galactosidasa/análisis , Humanos , Cationes/química
3.
Digit Discov ; 3(4): 805-817, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638647

RESUMEN

Imaging mass spectrometry is a label-free imaging modality that allows for the spatial mapping of many compounds directly in tissues. In an imaging mass spectrometry experiment, a raster of the tissue surface produces a mass spectrum at each sampled x, y position, resulting in thousands of individual mass spectra, each comprising a pixel in the resulting ion images. However, efficient analysis of imaging mass spectrometry datasets can be challenging due to the hyperspectral characteristics of the data. Each spectrum contains several thousand unique compounds at discrete m/z values that result in unique ion images, which demands robust and efficient algorithms for searching, statistical analysis, and visualization. Some traditional post-processing techniques are fundamentally ill-equipped to dissect these types of data. For example, while principal component analysis (PCA) has long served as a useful tool for mining imaging mass spectrometry datasets to identify correlated analytes and biological regions of interest, the interpretation of the PCA scores and loadings can be non-trivial. The loadings often contain negative peaks in the PCA-derived pseudo-spectra, which are difficult to ascribe to underlying tissue biology. Herein, we have utilized extended similarity indices to streamline the interpretation of imaging mass spectrometry data. This novel workflow uses PCA as a pixel-selection method to parse out the most and least correlated pixels, which are then compared using the extended similarity indices. The extended similarity indices complement PCA by removing all non-physical artifacts and streamlining the interpretation of large volumes of imaging mass spectrometry spectra simultaneously. The linear complexity, O(N), of these indices suggests that large imaging mass spectrometry datasets can be analyzed in a 1 : 1 scale of time and space with respect to the size of the input data. The extended similarity indices algorithmic workflow is exemplified here by identifying discrete biological regions of mouse brain tissue.

4.
Talanta ; 274: 125923, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569366

RESUMEN

Mitragyna speciosa, more commonly known as kratom, has emerged as an alternative to treat chronic pain and addiction. However, the alkaloid components of kratom, which are the major contributors to kratom's pharmaceutical properties, have not yet been fully investigated. In this study, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was used to map the biodistribution of three alkaloids (corynantheidine, mitragynine, and speciogynine) in rat brain tissues. The alkaloids produced three main ion types during MALDI analysis: [M + H]+, [M - H]+, and [M - 3H]+. Contrary to previous reports suggesting that the [M - H]+ and [M - 3H]+ ion types form during laser ablation, these ion types can also be produced during the MALDI matrix application process. Several strategies are proposed to accurately map the biodistribution of the alkaloids. Due to differences in the relative abundances of the ions in different biological regions of the tissue, differences in ionization efficiencies of the ions, and potential overlap of the [M - H]+ and [M - 3H]+ ion types with endogenous metabolites of the same empirical formula, a matrix that mainly produces the [M + H]+ ion type is optimal for accurate mapping of the alkaloids. Alternatively, the most abundant ion type can be mapped or the intensities of all ion types can be summed together to generate a composite image. The accuracy of each of these approaches is explored and validated.


Asunto(s)
Alcaloides , Encéfalo , Mitragyna , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Mitragyna/química , Ratas , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Alcaloides/farmacocinética , Alcaloides/análisis , Alcaloides/química , Masculino , Iones/química , Distribución Tisular , Ratas Sprague-Dawley
5.
bioRxiv ; 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37546817

RESUMEN

Imaging mass spectrometry is a label-free imaging modality that allows for the spatial mapping of many compounds directly in tissues. In an imaging mass spectrometry experiment, a raster of the tissue surface produces a mass spectrum at each sampled x, y position, resulting in thousands of individual mass spectra, each comprising a pixel in the resulting ion images. However, efficient analysis of imaging mass spectrometry datasets can be challenging due to the hyperspectral characteristics of the data. Each spectrum contains several thousand unique compounds at discrete m/z values that result in unique ion images, which demands robust and efficient algorithms for searching, statistical analysis, and visualization. Some traditional post-processing techniques are fundamentally ill-equipped to dissect these types of data. For example, while principal component analysis (PCA) has long served as a useful tool for mining imaging mass spectrometry datasets to identify correlated analytes and biological regions of interest, the interpretation of the PCA scores and loadings can be non-trivial. The loadings often containing negative peaks in the PCA-derived pseudo-spectra, which are difficult to ascribe to underlying tissue biology. Herein, we have utilized extended similarity indices to streamline the interpretation of imaging mass spectrometry data. This novel workflow uses PCA as a pixel-selection method to parse out the most and least correlated pixels, which are then compared using the extended similarity indices. The extended similarity indices complement PCA by removing all non-physical artifacts and streamlining the interpretation of large volumes of IMS spectra simultaneously. The linear complexity, O(N), of these indices suggests that large imaging mass spectrometry datasets can be analyzed in a 1:1 scale of time and space with respect to the size of the input data. The extended similarity indices algorithmic workflow is exemplified here by identifying discrete biological regions of mouse brain tissue.

6.
Anal Bioanal Chem ; 415(18): 4319-4331, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36629896

RESUMEN

The separation and identification of lipids in complex mixtures are critical to deciphering their cellular functions. Failure to resolve isobaric compounds (e.g., via high mass resolution or tandem mass spectrometry) can result in incorrect identifications in mass spectrometry experiments. In imaging mass spectrometry, unresolved peaks can also result in composite images of multiple compounds, giving inaccurate depictions of molecular distributions. Gas-phase ion/ion reactions can be used to selectively react with specific chemical functional groups on a target analyte, thereby extracting it from a complex mixture and shifting its m/z value to an unobstructed region of the mass range. Herein, we use selective Schiff base formation via a novel charge inversion ion/ion reaction to purify phosphatidylserines from other isobaric (i.e., same nominal mass) lipids and reveal their singular distributions in imaging mass spectrometry. The selective Schiff base formation between singly deprotonated phosphatidylserine (PS) lipid anions and doubly charged N,N,N',N'-tetramethyl-N,N'-bis(6-oxohexyl)hexane-1,6-diaminium (TMODA) cations is performed using a modified commercial dual source hybrid Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This process is demonstrated using the isobaric lipids [PS 40:6 - H]- (m/z 834.528) and [SHexCer d38:1 - H]- (m/z 834.576), which produces [PS 40:6 + TMODA - H - H2O]+ (m/z 1186.879), and [SHexCer d38:1 + TMODA - H]+ (m/z 1204.938) product ions following the gas-phase charge inversion reaction. These product ions differ by roughly 18 Da in mass and are easily separated by low mass resolution analysis, while the isobaric precursor ions require roughly 45,000 mass resolving power (full-width at half maximum) to separate. Imaging mass spectrometry using targeted gas-phase ion/ion reactions shows distinct spatial distributions for the separated lipid product ions relative to the composite images of the unseparated precursor ions.


Asunto(s)
Bases de Schiff , Espectrometría de Masas en Tándem , Bases de Schiff/química , Aniones , Cationes , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA