Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Struct Funct ; 225(1): 249-284, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31807925

RESUMEN

Cholecystokinin (CCK) is a neuropeptide that modulates processes such as digestion, satiety, and anxiety. CCK-type peptides have been characterized in jawed vertebrates and invertebrates, but little is known about CCK-type signalling in the most ancient group of vertebrates, the agnathans. Here, we have cloned and sequenced a cDNA encoding a sea lamprey (Petromyzon marinus L.) CCK-type precursor (PmCCK), which contains a CCK-type octapeptide sequence (PmCCK-8) that is highly similar to gnathostome CCKs. Using mRNA in situ hybridization, the distribution of PmCCK-expressing neurons was mapped in the CNS of P. marinus. This revealed PmCCK-expressing neurons in the hypothalamus, posterior tubercle, prethalamus, nucleus of the medial longitudinal fasciculus, midbrain tegmentum, isthmus, rhombencephalic reticular formation, and the putative nucleus of the solitary tract. Some PmCCK-expressing neuronal populations were only observed in adults, revealing important differences with larvae. We generated an antiserum to PmCCK-8 to enable immunohistochemical analysis of CCK expression, which revealed that GABA or glutamate, but not serotonin, tyrosine hydroxylase or neuropeptide Y, is co-expressed in some PmCCK-8-immunoreactive (ir) neurons. Importantly, this is the first demonstration of co-localization of GABA and CCK in neurons of a non-mammalian vertebrate. We also characterized extensive cholecystokinergic fibre systems of the CNS, including innervation of habenular subnuclei. A conspicuous PmCCK-8-ir tract ascending in the lateral rhombencephalon selectively innervates a glutamatergic population in the dorsal isthmic grey. Interestingly, this tract is reminiscent of the secondary gustatory/visceral tract of teleosts. In conclusion, this study provides important new information on the evolution of the cholecystokinergic system in vertebrates.


Asunto(s)
Encéfalo/citología , Encéfalo/metabolismo , Colecistoquinina/metabolismo , Neuronas/citología , Neuronas/metabolismo , Petromyzon/anatomía & histología , Petromyzon/metabolismo , Precursores de Proteínas/metabolismo , Animales , Evolución Biológica , ADN Complementario/metabolismo , Hibridación in Situ , ARN Mensajero/metabolismo , Maduración Sexual , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo
2.
Mar Genomics ; 24 Pt 2: 177-83, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26472700

RESUMEN

Opsins--G-protein coupled receptors involved in photoreception--have been extensively studied in the animal kingdom. The present work provides new insights into opsin-based photoreception and photoreceptor cell evolution with a first analysis of opsin sequence data for a major deuterostome clade, the Ambulacraria. Systematic data analysis, including for the first time hemichordate opsin sequences and an expanded echinoderm dataset, led to a robust opsin phylogeny for this cornerstone superphylum. Multiple genomic and transcriptomic resources were surveyed to cover each class of Hemichordata and Echinodermata. In total, 119 ambulacrarian opsin sequences were found, 22 new sequences in hemichordates and 97 in echinoderms (including 67 new sequences). We framed the ambulacrarian opsin repertoire within eumetazoan diversity by including selected reference opsins from non-ambulacrarians. Our findings corroborate the presence of all major ancestral bilaterian opsin groups in Ambulacraria. Furthermore, we identified two opsin groups specific to echinoderms. In conclusion, a molecular phylogenetic framework for investigating light-perception and photobiological behaviors in marine deuterostomes has been obtained.


Asunto(s)
Cordados no Vertebrados/genética , Equinodermos/genética , Evolución Molecular , Opsinas/metabolismo , Filogenia , Secuencia de Aminoácidos , Animales , Regulación de la Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Opsinas/genética , Conformación Proteica
3.
Science ; 343(6166): 38-41, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24263131

RESUMEN

The optical light generated simultaneously with x-rays and gamma rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse. We report on the bright optical flash and fading afterglow from powerful burst GRB 130427A. The optical and >100-megaelectron volt (MeV) gamma-ray flux show a close correlation during the first 7000 seconds, which is best explained by reverse shock emission cogenerated in the relativistic burst ejecta as it collides with surrounding material. At later times, optical observations show the emergence of emission generated by a forward shock traversing the circumburst environment. The link between optical afterglow and >100-MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying gamma-ray emission at energies ranging from gigaelectron volts to teraelectron volts.

4.
Pharmacol Rev ; 62(4): 588-631, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21079038

RESUMEN

There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.


Asunto(s)
Receptores de Cannabinoides/metabolismo , Agonistas de Receptores de Cannabinoides , Antagonistas de Receptores de Cannabinoides , Moduladores de Receptores de Cannabinoides/metabolismo , Cannabinoides/metabolismo , Humanos , Ligandos , Filogenia , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo , Terminología como Asunto
5.
Dev Biol ; 300(1): 434-60, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16965768

RESUMEN

The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein-coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins.


Asunto(s)
Genoma , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/crecimiento & desarrollo , Erizos de Mar/crecimiento & desarrollo , Animales , Axones/fisiología , Conexinas/genética , Electrofisiología , Humanos , Larva/fisiología , Mamíferos , Neuronas/fisiología , Filogenia , Erizos de Mar/clasificación , Erizos de Mar/genética , Sinapsis/fisiología , Factores de Transcripción/genética
6.
Handb Exp Pharmacol ; (168): 283-97, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16596778

RESUMEN

The endocannabinoid signalling system in mammals comprises several molecular components, including cannabinoid receptors (e.g. CB1, CB2), putative endogenous ligands for these receptors [e.g. anandamide, 2-arachidonoylglycerol (2-AG)] and enzymes involved in the biosynthesis and inactivation of anandamide (e.g. NAPE-PLD, FAAH) and 2-AG (e.g. DAG lipase, MGL). In this review we examine the occurrence of these molecules in non-mammalian organisms (in particular, animals and plants) by surveying published data and by basic local alignment search tool (BLAST) analysis of the GenBank database and of genomic sequence data from several vertebrate and invertebrate species. We conclude that the ability of cells to synthesise molecules that are categorised as "endocannabinoids" in mammals is an evolutionarily ancient phenomenon that may date back to the unicellular common ancestor of animals and plants. However, exploitation of these molecules for intercellular signalling may have occurred independently in different lineages during the evolution of the eukaryotes. The CB1- and CB2-type receptors that mediate effects of endocannabinoids in mammals occur throughout the vertebrates, and an orthologue of vertebrate cannabinoid receptors was recently identified in the deuterostomian invertebrate Ciona intestinalis (CiCBR). However, orthologues of the vertebrate cannabinoid receptors are not found in protostomian invertebrates (e.g. Drosophila, Caenorhabditis elegans). Therefore, it is likely that a CB1/CB2-type cannabinoid receptor originated in a deuterostomian invertebrate. This phylogenetic information provides a basis for exploitation of selected non-mammalian organisms as model systems for research on endocannabinoid signalling.


Asunto(s)
Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Transducción de Señal/fisiología , Amidohidrolasas/análisis , Animales , Ácidos Araquidónicos/análisis , Ácidos Araquidónicos/biosíntesis , Evolución Biológica , Glicéridos/análisis , Glicéridos/biosíntesis , Humanos , Filogenia , Alcamidas Poliinsaturadas , Receptor Cannabinoide CB1/análisis , Receptor Cannabinoide CB2/análisis
7.
Neuroscience ; 119(3): 803-12, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12809701

RESUMEN

In this study we used in situ hybridisation and double-labelling immunohistochemistry to characterise cannabinoid receptor 1 (CB(1)) expression in rat lumbar dorsal root ganglion (DRG) neurons.Approximately 25% of DRG neurons expressed CB(1) mRNA and displayed immunoreactivity for CB(1). Sixty-nine percent to 82% of CB(1)-expressing cells were also immunoreactive for neurofilament 200, indicative of myelinated A-fibre neurons, which tend to be large- and medium-sized DRG neurons (>600 microm(2)). Approximately 10% of CB1-expressing cells also expressed transient receptor potential vanilloid family ion channel 2 (TRPV2), the noxious heat-transducing channel found in medium to large lightly myelinated Adelta-fibre DRG neurons. Seventeen percent to 26% of CB(1)-expressing cells co-stained using Isolectin B4, 9-10% for calcitonin gene-related peptide and 11-20% for transient receptor potential vanilloid family ion channel 1 (TRPV1), predominantly markers of small non-myelinated C-fibre DRG neurons (<600 microm(2)). These findings suggest that whilst a wide range of DRG neuron phenotypes express CB(1), it is predominantly associated with myelinated fibres.


Asunto(s)
Ganglios Espinales/metabolismo , Glicoproteínas , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Amielínicas/metabolismo , Neuronas Aferentes/metabolismo , Nociceptores/metabolismo , Dolor/metabolismo , Receptores de Droga/genética , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Tamaño de la Célula/fisiología , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/citología , Lectinas/metabolismo , Masculino , Mecanorreceptores/citología , Mecanorreceptores/metabolismo , Ratones , Ratones Noqueados , Fibras Nerviosas Mielínicas/ultraestructura , Fibras Nerviosas Amielínicas/ultraestructura , Proteínas de Neurofilamentos/metabolismo , Neuronas Aferentes/citología , Nociceptores/citología , Dolor/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Cannabinoides , Receptores de Droga/metabolismo
8.
Neuroscience ; 119(2): 481-96, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12770562

RESUMEN

Fatty acid amide hydrolase (FAAH) catalyses hydrolysis of the endocannabinoid arachidonoylethanolamide ("anandamide") in vitro and regulates anandamide levels in the brain. In the cerebellar cortex, hippocampus and neocortex of the rat brain, FAAH is located in the somata and dendrites of neurons that are postsynaptic to axon fibers expressing the CB(1) cannabinoid receptor [Proc R Soc Lond B 265 (1998) 2081]. This complementary pattern of FAAH and CB(1) expression provided the basis for a hypothesis that endocannabinoids may function as retrograde signaling molecules at synapses in the brain [Proc R Soc Lond B 265 (1998) 2081; Phil Trans R Soc Lond 356 (2001) 381] and subsequent experimental studies have confirmed this [Science 296 (2002) 678]. To assess more widely the functions of FAAH in the brain and the potential impact of FAAH activity on the spatiotemporal dynamics of endocannabinoid signaling in different regions of the brain, here we have employed immunocytochemistry to compare the distribution of FAAH and CB(1) throughout the mouse brain, using FAAH(-/-) mice as negative controls to validate the specificity of FAAH-immunoreactivity observed in wild type animals. In many regions of the brain, a complementary pattern of FAAH and CB(1) expression was observed, with FAAH-immunoreactive neuronal somata and dendrites surrounded by CB(1)-immunoreactive fibers. In these regions of the brain, FAAH may regulate postsynaptic formation of anandamide, thereby influencing the spatiotemporal dynamics of retrograde endocannabinoid signaling. However, in some regions of the brain such as the globus pallidus and substantia nigra pars reticulata, CB(1) receptors are abundant but with little or no associated FAAH expression and in these brain regions the spatial impact and/or duration of endocannabinoid signaling may be less restricted than in regions enriched with FAAH. A more complex situation arises in several regions of the brain where both FAAH and CB(1) are expressed but in a non-complementary pattern, with FAAH located in neurons and/or oligodendrocytes that are proximal but not postsynaptic to CB(1)-expressing axon fibers. Here FAAH may nevertheless influence endocannabinoid signaling but more remotely. Finally, there are regions of the brain where FAAH-immunoreactive neurons and/or oligodendrocytes occur in the absence of CB(1)-immunoreactive fibers and here FAAH may be involved in regulation of signaling mediated by other endocannabinoid receptors or by receptors for other fatty acid amide signaling molecules. In conclusion, by comparing the distribution of FAAH and CB(1) in the mouse brain, we have provided a neuroanatomical framework for comparative analysis of the role of FAAH in regulation of the spatiotemporal dynamics of retrograde endocannabinoid signaling in different regions of the brain.


Asunto(s)
Amidohidrolasas/análisis , Encéfalo/metabolismo , Receptores de Droga/análisis , Amidohidrolasas/fisiología , Animales , Encéfalo/citología , Encéfalo/enzimología , Moduladores de Receptores de Cannabinoides , Endocannabinoides , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Receptores de Cannabinoides
9.
Philos Trans R Soc Lond B Biol Sci ; 356(1407): 381-408, 2001 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-11316486

RESUMEN

The plant Cannabis sativa has been used by humans for thousands of years because of its psychoactivity. The major psychoactive ingredient of cannabis is Delta(9)-tetrahydrocannabinol, which exerts effects in the brain by binding to a G-protein-coupled receptor known as the CB1 cannabinoid receptor. The discovery of this receptor indicated that endogenous cannabinoids may occur in the brain, which act as physiological ligands for CB1. Two putative endocannabinoid ligands, arachidonylethanolamide ('anandamide') and 2-arachidonylglycerol, have been identified, giving rise to the concept of a cannabinoid signalling system. Little is known about how or where these compounds are synthesized in the brain and how this relates to CB1 expression. However, detailed neuroanatomical and electrophysiological analysis of mammalian nervous systems has revealed that the CB1 receptor is targeted to the presynaptic terminals of neurons where it acts to inhibit release of 'classical' neurotransmitters. Moreover, an enzyme that inactivates endocannabinoids, fatty acid amide hydrolase, appears to be preferentially targeted to the somatodendritic compartment of neurons that are postsynaptic to CB1-expressing axon terminals. Based on these findings, we present here a model of cannabinoid signalling in which anandamide is synthesized by postsynaptic cells and acts as a retrograde messenger molecule to modulate neurotransmitter release from presynaptic terminals. Using this model as a framework, we discuss the role of cannabinoid signalling in different regions of the nervous system in relation to the characteristic physiological actions of cannabinoids in mammals, which include effects on movement, memory, pain and smooth muscle contractility. The discovery of the cannabinoid signalling system in mammals has prompted investigation of the occurrence of this pathway in non-mammalian animals. Here we review the evidence for the existence of cannabinoid receptors in non-mammalian vertebrates and invertebrates and discuss the evolution of the cannabinoid signalling system. Genes encoding orthologues of the mammalian CB1 receptor have been identified in a fish, an amphibian and a bird, indicating that CB1 receptors may occur throughout the vertebrates. Pharmacological actions of cannabinoids and specific binding sites for cannabinoids have been reported in several invertebrate species, but the molecular basis for these effects is not known. Importantly, however, the genomes of the protostomian invertebrates Drosophila melanogaster and Caenorhabditis elegans do not contain CB1 orthologues, indicating that CB1-like cannabinoid receptors may have evolved after the divergence of deuterostomes (e.g. vertebrates and echinoderms) and protostomes. Phylogenetic analysis of the relationship of vertebrate CB1 receptors with other G-protein-coupled receptors reveals that the paralogues that appear to share the most recent common evolutionary origin with CB1 are lysophospholipid receptors, melanocortin receptors and adenosine receptors. Interestingly, as with CB1, each of these receptor types does not appear to have Drosophila orthologues, indicating that this group of receptors may not occur in protostomian invertebrates. We conclude that the cannabinoid signalling system may be quite restricted in its phylogenetic distribution, probably occurring only in the deuterostomian clade of the animal kingdom and possibly only in vertebrates.


Asunto(s)
Cannabinoides/metabolismo , Fenómenos Fisiológicos del Sistema Nervioso , Receptores de Droga/metabolismo , Transducción de Señal/fisiología , Animales , Moduladores de Receptores de Cannabinoides , Humanos , Neurobiología , Receptores de Cannabinoides , Receptores de Droga/fisiología
10.
J Exp Biol ; 204(Pt 5): 875-85, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11171411

RESUMEN

Smooth muscle relaxation in vertebrates is regulated by a variety of neuronal signalling molecules, including neuropeptides and nitric oxide (NO). The physiology of muscle relaxation in echinoderms is of particular interest because these animals are evolutionarily more closely related to the vertebrates than to the majority of invertebrate phyla. However, whilst in vertebrates there is a clear structural and functional distinction between visceral smooth muscle and skeletal striated muscle, this does not apply to echinoderms, in which the majority of muscles, whether associated with the body wall skeleton and its appendages or with visceral organs, are made up of non-striated fibres. The mechanisms by which the nervous system controls muscle relaxation in echinoderms were, until recently, unknown. Using the cardiac stomach of the starfish Asterias rubens as a model, it has been established that the NO-cGMP signalling pathway mediates relaxation. NO also causes relaxation of sea urchin tube feet, and NO may therefore function as a 'universal' muscle relaxant in echinoderms. The first neuropeptides to be identified in echinoderms were two related peptides isolated from Asterias rubens known as SALMFamide-1 (S1) and SALMFamide-2 (S2). Both S1 and S2 cause relaxation of the starfish cardiac stomach, but with S2 being approximately ten times more potent than S1. SALMFamide neuropeptides have also been isolated from sea cucumbers, in which they cause relaxation of both gut and body wall muscle. Therefore, like NO, SALMFamides may also function as 'universal' muscle relaxants in echinoderms. The mechanisms by which SALMFamides cause relaxation of echinoderm muscle are not known, but several candidate signal transduction pathways are discussed here. The SALMFamides do not, however, appear to act by promoting release of NO, and muscle relaxation in echinoderms is therefore probably regulated by at least two neuronal signalling systems acting in parallel. Recently, other neuropeptides that influence muscle tone have been isolated from the sea cucumber Stichopus japonicus using body wall muscle as a bioassay, but at present SALMFamide peptides are the only ones that have been found to have a direct relaxing action on echinoderm muscle. One of the Stichopus japonicus peptides (holothurin 1), however, causes a reduction in the magnitude of electrically evoked muscle contraction in Stichopus japonicus and also causes 'softening' of the body wall dermis, a 'mutable connective tissue'. It seems most likely that this effect of holothurin 1 on body wall dermis is mediated by constituent muscle cells, and the concept of 'mutable connective tissue' in echinoderms may therefore need to be re-evaluated to incorporate the involvement of muscle, as proposed recently for the spine ligament in sea urchins.


Asunto(s)
Equinodermos/fisiología , Relajación Muscular , Músculos/inervación , Secuencia de Aminoácidos , Animales , GMP Cíclico/fisiología , Sistema Nervioso/química , Neuropéptidos/química , Óxido Nítrico/fisiología , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA