Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(40): e2207766119, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161921

RESUMEN

We report on the nonlinear optical signatures of quantum phase transitions in the high-temperature superconductor YBCO, observed through high harmonic generation. While the linear optical response of the material is largely unchanged when cooling across the phase transitions, the nonlinear optical response sensitively imprints two critical points, one at the critical temperature of the cuprate with the exponential growth of the surface harmonic yield in the superconducting phase and another critical point, which marks the transition from strange metal to pseudogap phase. To reveal the underlying microscopic quantum dynamics, a strong-field quasi-Hubbard model was developed, which describes the measured optical response dependent on the formation of Cooper pairs. Further, the theory provides insight into the carrier scattering dynamics and allows us to differentiate between the superconducting, pseudogap, and strange metal phases. The direct connection between nonlinear optical response and microscopic dynamics provides a powerful methodology to study quantum phase transitions in correlated materials. Further implications are light wave control over intricate quantum phases, light-matter hybrids, and application for optical quantum computing.

2.
Opt Lett ; 45(13): 3813-3815, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630961

RESUMEN

BaGa2GeSe6 (BGGSe) is a newly developed nonlinear material that is attractive for ultrabroad frequency mixing and ultrashort pulse generation due to its comparably low dispersion and high damage threshold. A numerical study shows the material's capacity for octave-spanning mid-infrared pulse generation up to 18 µm. In a first experiment, we show that a long crystal length of 2.6 mm yields a pulse energy of 21 pJ at 100 MHz with a spectral bandwidth covering 5.8 to 8.5 µm. The electric field of the carrier-envelope-phase stable pulse is directly measured with electro-optical sampling and reveals a pulse duration of 91 fs, which corresponds to sub-four optical cycles, thus confirming some of the prospects of the material for ultrashort pulse generation and mid-infrared spectroscopy.

3.
Sci Adv ; 5(6): eaaw8794, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31187063

RESUMEN

Probing matter with light in the mid-infrared provides unique insight into molecular composition, structure, and function with high sensitivity. However, laser spectroscopy in this spectral region lacks the broadband or tunable light sources and efficient detectors available in the visible or near-infrared. We overcome these challenges with an approach that unites a compact source of phase-stable, single-cycle, mid-infrared pulses with room temperature electric field-resolved detection at video rates. The ultrashort pulses correspond to laser frequency combs that span 3 to 27 µm (370 to 3333 cm-1), and are measured with dynamic range of >106 and spectral resolution as high as 0.003 cm-1. We highlight the brightness and coherence of our apparatus with gas-, liquid-, and solid-phase spectroscopy that extends over spectral bandwidths comparable to thermal or infrared synchrotron sources. This unique combination enables powerful avenues for rapid detection of biological, chemical, and physical properties of matter with molecular specificity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA