Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trop Anim Health Prod ; 54(2): 142, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35332362

RESUMEN

The improvement of milk production of indigenous Sudanese cattle such as Bos indicus Butana and its cross with Holstein is a major goal of the Sudanese government to ensure sufficient healthy nutrition in the country. In this study, we investigated the K232A polymorphism of diacylglycerol acyltransferase (DGAT1), a well-known modulator of milk production in other breeds. We determined allele frequencies and the allele effects on milk production. Therefore, 93 purebred Butana and 203 Butana × Holstein crossbred cattle were genotyped using competitive allele-specific PCR assays. Association analysis was performed using a linear mixed model in R. In purebred Butana cattle, the lysine DGAT1 protein variant K232, which is found to be associated with higher fat and protein contents, as well as higher fat yield was highly frequent at 0.929, while its frequency in Butana × Holstein crossbred cattle was 0.394. Significant effects were found on milk yield (P = 7.6 × 10-20), fat yield (P = 2.2 × 10-17), protein yield (P = 2.0 × 10-19) and lactose yield (P = 4.0 × 10-18) in crossbred cattle. As expected, the protein variant K232 was disadvantageous since it was decreasing milk, protein, and lactose yields by 1.741 kg, 0.063 kg and 0.084 kg, respectively. No significant effects were found for milk fat, protein, and lactose contents. The high frequency of the lysine DGAT1 protein variant K232 in Butana cattle could contribute to their high milk fat content in combination with low milk yield. In Butana × Holstein crossbred cattle, the DGAT1 marker can be used for effective selection and thus genetic improvement of milk production.


Asunto(s)
Diacilglicerol O-Acetiltransferasa , Leche , Animales , Bovinos/genética , Diacilglicerol O-Acetiltransferasa/genética , Frecuencia de los Genes , Genotipo , Leche/metabolismo , Polimorfismo Genético
2.
Trop Anim Health Prod ; 54(1): 50, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022894

RESUMEN

The Bos indicus zebu cattle Butana is the most commonly used indigenous dairy cattle breed in Sudan. In the last years, high-yielding Holstein dairy cattle were introgressed into Butana cattle to improve their milk yield and simultaneously keep their good adaption to extreme environmental conditions. With the focus on the improvement of milk production, other problems arose such as an increased susceptibility to mastitis. Thus, genetic selection for mastitis resistance should be considered to maintain healthy and productive cows. In this study, we tested 10 single nucleotide polymorphisms (SNPs) which had been associated with somatic cell score (SCS) in Holstein cattle for association with SCS in 37 purebred Butana and 203 Butana × Holstein crossbred cattle from Sudan. Animals were genotyped by competitive allele-specific PCR assays and association analysis was performed using a linear mixed model. All 10 SNPs were segregating in the crossbred Butana × Holstein populations, but only 8 SNPs in Sudanese purebred Butana cattle. The SNP on chromosome 13 was suggestively associated with SCS in the Butana × Holstein crossbred population (rs109441194, 13:79,365,467, PBF = 0.054) and the SNP on chromosome 19 was significantly associated with SCS in both populations (rs41257403, 19:50,027,458, Butana: PBF = 0.003, Butana × Holstein: PBF = 6.2 × 10-16). The minor allele of both SNPs showed an increase in SCS. Therefore, selection against the disadvantageous minor allele could be used for genetic improvement of mastitis resistance in the studied populations. However, investigations in a bigger population and across the whole genome are needed to identify additional genomic loci.


Asunto(s)
Leche , Polimorfismo de Nucleótido Simple , Alelos , Animales , Bovinos/genética , Femenino , Genómica , Genotipo
3.
BMC Genomics ; 22(1): 905, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34922441

RESUMEN

BACKGROUND: German Black Pied cattle (DSN) are an endangered dual-purpose breed which was largely replaced by Holstein cattle due to their lower milk yield. DSN cattle are kept as a genetic reserve with a current herd size of around 2500 animals. The ability to track sequence variants specific to DSN could help to support the conservation of DSN's genetic diversity and to provide avenues for genetic improvement. RESULTS: Whole-genome sequencing data of 304 DSN cattle were used to design a customized DSN200k SNP chip harboring 182,154 variants (173,569 SNPs and 8585 indels) based on ten selection categories. We included variants of interest to DSN such as DSN unique variants and variants from previous association studies in DSN, but also variants of general interest such as variants with predicted consequences of high, moderate, or low impact on the transcripts and SNPs from the Illumina BovineSNP50 BeadChip. Further, the selection of variants based on haplotype blocks ensured that the whole-genome was uniformly covered with an average variant distance of 14.4 kb on autosomes. Using 300 DSN and 162 animals from other cattle breeds including Holstein, endangered local cattle populations, and also a Bos indicus breed, performance of the SNP chip was evaluated. Altogether, 171,978 (94.31%) of the variants were successfully called in at least one of the analyzed breeds. In DSN, the number of successfully called variants was 166,563 (91.44%) while 156,684 (86.02%) were segregating at a minor allele frequency > 1%. The concordance rate between technical replicates was 99.83 ± 0.19%. CONCLUSION: The DSN200k SNP chip was proved useful for DSN and other Bos taurus as well as one Bos indicus breed. It is suitable for genetic diversity management and marker-assisted selection of DSN animals. Moreover, variants that were segregating in other breeds can be used for the design of breed-specific customized SNP chips. This will be of great value in the application of conservation programs for endangered local populations in the future.


Asunto(s)
Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA