Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 6: 7342, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26059464

RESUMEN

Spin-orbit coupling results in technologically-crucial phenomena underlying magnetic devices like magnetic memories and energy-efficient motors. In heavy element materials, the strength of spin-orbit coupling becomes large to affect the overall electronic nature and induces novel states such as topological insulators and spin-orbit-integrated Mott states. Here we report an unprecedented charge-ordering cascade in IrTe2 without the loss of metallicity, which involves localized spin-orbit Mott states with diamagnetic Ir(4+)-Ir(4+) dimers. The cascade in cooling, uncompensated in heating, consists of first order-type consecutive transitions from a pure Ir(3+) phase to Ir(3+)-Ir(4+) charge-ordered phases, which originate from Ir 5d to Te 5p charge transfer involving anionic polymeric bond breaking. Considering that the system exhibits superconductivity with suppression of the charge order by doping, analogously to cuprates, these results provide a new electronic paradigm of localized charge-ordered states interacting with itinerant electrons through large spin-orbit coupling.

2.
Phys Rev Lett ; 109(19): 197002, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23215417

RESUMEN

We use (75)As nuclear magnetic resonance to investigate the local electronic properties of Ba(Fe(1-x)Ru(x))(2)As(2) (x = 0.23). We find two phase transitions: to antiferromagnetism at T(N) ≈ 60 K and to superconductivity at T(C) ≈ 15 K. Below T(N), our data show that the system is fully magnetic, with a commensurate antiferromagnetic structure and a moment of 0.4µ(B)/Fe. The spin-lattice relaxation rate 1/(75)T(1) is large in the magnetic state, indicating a high density of itinerant electrons induced by Ru doping. On cooling below T(C), 1/(75)T(1) on the magnetic sites falls sharply, providing unambiguous evidence for the microscopic coexistence of antiferromagnetism and superconductivity.

3.
Phys Rev Lett ; 107(12): 126402, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-22026779

RESUMEN

We report the observation of highly anisotropic Dirac fermions in a Bi square net of SrMnBi(2), based on a first-principles calculation, angle-resolved photoemission spectroscopy, and quantum oscillations for high-quality single crystals. We found that the Dirac dispersion is generally induced in the (SrBi)(+) layer containing a double-sized Bi square net. In contrast to the commonly observed isotropic Dirac cone, the Dirac cone in SrMnBi(2) is highly anisotropic with a large momentum-dependent disparity of Fermi velocities of ~8. These findings demonstrate that a Bi square net, a common building block of various layered pnictides, provides a new platform that hosts highly anisotropic Dirac fermions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...