Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Cell Biol ; 32(1): 45-57, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34384659

RESUMEN

Failure to complete DNA replication is one of the major sources of genome instability leading to aneuploidy, chromosome breakage, and chromosome rearrangements that are associated with human cancer. One of the surprising revelations of the past decade is that the completion of replication at so-called common fragile sites (CFS) occurs very late in the cell cycle - at mitosis - through a process termed MiDAS (mitotic DNA synthesis). MiDAS is strongly related to another cancer-promoting phenomenon: the activation of alternative lengthening of telomeres (ALT). Our understanding of the mechanisms of ALT and MiDAS in mammalian cells has drawn heavily from recent advances in the study of break-induced replication (BIR), especially in budding yeast. We provide new insights into the BIR, MiDAS, and ALT pathways and their shared similarities.


Asunto(s)
Reparación del ADN , Replicación del ADN , Animales , Replicación del ADN/genética , Inestabilidad Genómica , Humanos , Mamíferos , Recombinación Genética/genética , Telómero/genética
2.
Curr Genet ; 66(5): 917-926, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32399607

RESUMEN

DNA double-strand break repair allows cells to survive both exogenous and endogenous insults to the genome. In yeast, the recombinases Rad51 and Rad52 are central to multiple forms of homology-dependent repair. Classically, Rad51 and Rad52 are thought to act cooperatively, with formation of the functional Rad51 nucleofilament facilitated by the mediator function of Rad52. Several studies have now identified functions for the interaction between Rad51 and Rad52 that are independent of the mediator function of Rad52 and affect a seemingly diverse array of functions in de novo telomere addition, global chromosome mobility following DNA damage, Rad51 nucleofilament stability, checkpoint adaptation, and microhomology-mediated chromosome rearrangements. Here, we review these functions with an emphasis on our recent discovery that the Rad51-Rad52 interaction influences the probability of de novo telomere addition at sites preferentially targeted by telomerase following a double-strand break (DSB). We present data addressing the prevalence of sites within the yeast genome that are capable of stimulating de novo telomere addition following a DSB and speculate about the potential role such sites may play in genome stability.


Asunto(s)
Cromosomas Fúngicos/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telómero/metabolismo , Rotura Cromosómica , Cromosomas Fúngicos/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Telómero/genética
3.
PLoS Genet ; 16(2): e1008608, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32012161

RESUMEN

DNA double-strand breaks (DSBs) are toxic forms of DNA damage that must be repaired to maintain genome integrity. Telomerase can act upon a DSB to create a de novo telomere, a process that interferes with normal repair and creates terminal deletions. We previously identified sequences in Saccharomyces cerevisiae (SiRTAs; Sites of Repair-associated Telomere Addition) that undergo unusually high frequencies of de novo telomere addition, even when the original chromosome break is several kilobases distal to the eventual site of telomerase action. Association of the single-stranded telomere binding protein Cdc13 with a SiRTA is required to stimulate de novo telomere addition. Because extensive resection must occur prior to Cdc13 binding, we utilized these sites to monitor the effect of proteins involved in homologous recombination. We find that telomere addition is significantly reduced in the absence of the Rad51 recombinase, while loss of Rad52, required for Rad51 nucleoprotein filament formation, has no effect. Deletion of RAD52 suppresses the defect of the rad51Δ strain, suggesting that Rad52 inhibits de novo telomere addition in the absence of Rad51. The ability of Rad51 to counteract this effect of Rad52 does not require DNA binding by Rad51, but does require interaction between the two proteins, while the inhibitory effect of Rad52 depends on its interaction with Replication Protein A (RPA). Intriguingly, the genetic interactions we report between RAD51 and RAD52 are similar to those previously observed in the context of checkpoint adaptation. Forced recruitment of Cdc13 fully restores telomere addition in the absence of Rad51, suggesting that Rad52, through its interaction with RPA-coated single-stranded DNA, inhibits the ability of Cdc13 to bind and stimulate telomere addition. Loss of the Rad51-Rad52 interaction also stimulates a subset of Rad52-dependent microhomology-mediated repair (MHMR) events, consistent with the known ability of Rad51 to prevent single-strand annealing.


Asunto(s)
Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telómero/metabolismo , Roturas del ADN de Doble Cadena , Técnicas de Inactivación de Genes , Mutación , Unión Proteica/genética , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(52): 13186-13191, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30541886

RESUMEN

Eukaryotic DNA primases contain a [4Fe4S] cluster in the C-terminal domain of the p58 subunit (p58C) that affects substrate affinity but is not required for catalysis. We show that, in yeast primase, the cluster serves as a DNA-mediated redox switch governing DNA binding, just as in human primase. Despite a different structural arrangement of tyrosines to facilitate electron transfer between the DNA substrate and [4Fe4S] cluster, in yeast, mutation of tyrosines Y395 and Y397 alters the same electron transfer chemistry and redox switch. Mutation of conserved tyrosine 395 diminishes the extent of p58C participation in normal redox-switching reactions, whereas mutation of conserved tyrosine 397 causes oxidative cluster degradation to the [3Fe4S]+ species during p58C redox signaling. Switching between oxidized and reduced states in the presence of the Y397 mutations thus puts primase [4Fe4S] cluster integrity and function at risk. Consistent with these observations, we find that yeast tolerate mutations to Y395 in p58C, but the single-residue mutation Y397L in p58C is lethal. Our data thus show that a constellation of tyrosines for protein-DNA electron transfer mediates the redox switch in eukaryotic primases and is required for primase function in vivo.


Asunto(s)
ADN Primasa/química , Proteínas Hierro-Azufre/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Cristalografía por Rayos X , ADN Primasa/genética , Transporte de Electrón , Proteínas Hierro-Azufre/genética , Modelos Moleculares , Mutación , Oxidación-Reducción , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell Biol ; 36(12): 1750-63, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27044869

RESUMEN

DNA double-strand breaks (DSBs) pose a threat to genome stability and are repaired through multiple mechanisms. Rarely, telomerase, the enzyme that maintains telomeres, acts upon a DSB in a mutagenic process termed telomere healing. The probability of telomere addition is increased at specific genomic sequences termed sites of repair-associated telomere addition (SiRTAs). By monitoring repair of an induced DSB, we show that SiRTAs on chromosomes V and IX share a bipartite structure in which a core sequence (Core) is directly targeted by telomerase, while a proximal sequence (Stim) enhances the probability of de novo telomere formation. The Stim and Core sequences are sufficient to confer a high frequency of telomere addition to an ectopic site. Cdc13, a single-stranded DNA binding protein that recruits telomerase to endogenous telomeres, is known to stimulate de novo telomere addition when artificially recruited to an induced DSB. Here we show that the ability of the Stim sequence to enhance de novo telomere addition correlates with its ability to bind Cdc13, indicating that natural sites at which telomere addition occurs at high frequency require binding by Cdc13 to a sequence 20 to 100 bp internal from the site at which telomerase acts to initiate de novo telomere addition.


Asunto(s)
Elementos de Facilitación Genéticos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Sitios de Unión , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Hongos/química , ADN de Hongos/metabolismo , Genoma Fúngico , Telomerasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...