Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-515752

RESUMEN

Survival from COVID-19 depends on the ability of the host to effectively neutralize virions and infected cells, a process largely driven by antibody-mediated immunity. However, with the newly emerging variants that evade Spike-targeting antibodies, re-infections and breakthrough infections are increasingly common. A full characterization of SARS-CoV-2 mechanisms counteracting antibody-mediated immunity is needed. Here, we report that ORF8 is a SARS-CoV-2 factor that controls cellular Spike antigen levels. ORF8 limits the availability of mature Spike by inhibiting host protein synthesis and retaining Spike at the endoplasmic reticulum, reducing cell-surface Spike levels and recognition by anti-SARS-CoV-2 antibodies. With limited Spike availability, ORF8 restricts Spike incorporation during viral assembly, reducing Spike levels in virions. Cell entry of these virions leaves fewer Spike molecules at the cell surface, limiting antibody recognition of infected cells. Our studies propose an ORF8-dependent SARS-CoV-2 strategy that allows immune evasion of infected cells for extended viral production.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-474979

RESUMEN

SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 stably interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-297945

RESUMEN

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic, and responsible for over 170 million infections, and over 3.7 million deaths worldwide. Efforts to test, treat and vaccinate against this pathogen all benefit from an improved understanding of the basic biology of SARS-CoV-2. Both viral and cellular proteases play a crucial role in SARS-CoV-2 replication, and inhibitors targeting proteases have already shown success at inhibiting SARS-CoV-2 in cell culture models. Here, we study proteolytic cleavage of viral and cellular proteins in two cell line models of SARS-CoV-2 replication using mass spectrometry to identify protein neo-N-termini generated through protease activity. We identify previously unknown cleavage sites in multiple viral proteins, including major antigenic proteins S and N, which are the main targets for vaccine and antibody testing efforts. We discovered significant increases in cellular cleavage events consistent with cleavage by SARS-CoV-2 main protease, and identify 14 potential high-confidence substrates of the main and papain-like proteases, validating a subset with in vitro assays. We showed that siRNA depletion of these cellular proteins inhibits SARS-CoV-2 replication, and that drugs targeting two of these proteins: the tyrosine kinase SRC and Ser/Thr kinase MYLK, showed a dose-dependent reduction in SARS-CoV-2 titres. Overall, our study provides a powerful resource to understand proteolysis in the context of viral infection, and to inform the development of targeted strategies to inhibit SARS-CoV-2 and treat COVID-19.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20170365

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome (SARS)-CoV-2, continues to burden medical institutions around the world by increasing total hospitalization and Intensive Care Unit (ICU) admissions1-9 A better understanding of symptoms, comorbidities and medication used for preexisting conditions in patients with COVID-19 could help healthcare workers identify patients at increased risk of developing more severe disease10,11. Here, we have used self-reported data (symptoms, medications and comorbidities) from more than 3 million users from the COVID-19 Symptom Tracker app12 to identify previously reported and novel features predictive of patients being admitted in a hospital setting. Despite previously reported association between age and more severe disease phenotypes13-18, we found that patients age, sex and ethnic group were minimally predictive when compared to patients symptoms and comorbidities. The most important variables selected by our predictive algorithm were fever, the use of immunosuppressant medication, mobility aid, shortness of breath and fatigue. It is anticipated that early administration of preventative measures in COVID-19 positive patients (COVID+) who exhibit a high risk of hospitalization signature may prevent severe disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA