Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 290: 518-29, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25644422

RESUMEN

Cyclic AMP signaling is critical for activity-dependent refinement of neuronal circuits. Global disruption of adenylyl cyclase 1 (AC1), the major calcium/calmodulin-stimulated adenylyl cyclase in the brain, impairs formation of whisker-related discrete neural modules (the barrels) in cortical layer 4 in mice. Since AC1 is expressed both in the thalamus and the neocortex, the question of whether pre- or postsynaptic (or both) AC1 plays a role in barrel formation has emerged. Previously, we generated cortex-specific AC1 knockout (Cx-AC1KO) mice and found that these animals develop histologically normal barrels, suggesting a potentially more prominent role for thalamic AC1 in barrel formation. To determine this, we generated three new lines of mice: one in which AC1 is disrupted in nearly half of the thalamic ventrobasal nucleus cells in addition to the cortical excitatory neurons (Cx/pTh-AC1KO mouse), and another in which AC1 is disrupted in the thalamus but not in the cortex or brainstem nuclei of the somatosensory system (Th-AC1KO mouse). Cx/pTh-AC1KO mice show severe deficits in barrel formation. Th-AC1KO mice show even more severe disruption in barrel patterning. In these two lines, single thalamocortical (TC) axon labeling revealed a larger lateral extent of TC axons in layer 4 compared to controls. In the third line, all calcium-stimulated adenylyl cyclases (both AC1 and AC8) are deleted in cortical excitatory neurons. These mice have normal barrels. Taken together, these results indicate that thalamic AC1 plays a major role in patterning and refinement of the mouse TC circuitry.


Asunto(s)
Adenilil Ciclasas/metabolismo , Corteza Somatosensorial/crecimiento & desarrollo , Tálamo/fisiología , Adenilil Ciclasas/genética , Animales , Axones/fisiología , Inmunohistoquímica , Ratones Noqueados , Técnicas de Trazados de Vías Neuroanatómicas , Plasticidad Neuronal/fisiología , Corteza Somatosensorial/fisiología , Tálamo/crecimiento & desarrollo , Vibrisas/fisiología
2.
Brain Res Dev Brain Res ; 132(1): 107-11, 2001 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-11744114

RESUMEN

In mice, whiskers on the snout form a highly specialized tactile organ with exquisitely patterned neural representations in the brain. Targeted deletion of the Msx2 gene leads to severe craniofacial defects, and stubby, curly whiskers. We examined the whisker pad histology, innervation, and whisker-related pattern formation along the trigeminal pathway in Msx2 -/- mice. Although the whiskers are severely deformed, whisker follicle structure, pattern and density of innervation, as well as central neural patterns in the brainstem, thalamus, and cortex appeared normal. We conclude that whisker-related neural patterns can form in the absence of normal whiskers, as long as whisker follicle innervation is intact.


Asunto(s)
Proteínas de Unión al ADN/genética , Corteza Somatosensorial/embriología , Vibrisas/anomalías , Vibrisas/inervación , Animales , Complejo IV de Transporte de Electrones/análisis , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Ratones , Ratones Noqueados , Corteza Somatosensorial/enzimología , Tacto
3.
Brain Res Dev Brain Res ; 132(1): 97-102, 2001 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-11744112

RESUMEN

We examined whether the postsynaptic responses of cells in the principal sensory nucleus of the trigeminal nerve (PrV) are subject to long-term changes in synaptic strength, and if such changes were correlated the whisker-specific patterning during and just after the critical period for pattern formation. We used an in vitro brainstem preparation in which the trigeminal ganglion (TG) and PrV remained attached. By electrically activating TG afferents, we evoked large-amplitude extracellular field potentials. These responses were postsynaptic in origin and blocked by the glutamate antagonist, DNQX. At P1, a time when barrelettes are consolidating, high frequency stimulation of their afferents led to an immediate (<1 min) and long-lasting (> or =90 min) reduction (35%) in the amplitude of the evoked response. At P3-7, when the pattern of barrelettes have stabilized, the same form of tetanus led to an immediate and long-lasting increase (40%) in the amplitude of the response. Both forms of synaptic plasticity were mediated by the activation of L-type Ca(2+) channels. Application of the L-type channel blocker, nitrendipine, led to a complete blockade of any the tetanus induced changes. These associative processes may regulate the patterning and maintenance of whisker-specific patterns in the brainstem trigeminal nuclei.


Asunto(s)
Plasticidad Neuronal/fisiología , Núcleos del Trigémino/embriología , Núcleos del Trigémino/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/fisiología , Estimulación Eléctrica , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciación a Largo Plazo/fisiología , Inhibición Neural/fisiología , Nitrendipino/farmacología , Quinoxalinas/farmacología , Ratas , Sinapsis/fisiología
4.
Brain Res Dev Brain Res ; 131(1-2): 1-8, 2001 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-11718830

RESUMEN

Avian and rodent trigeminal ganglion (TG) neurons share common features in their neurotrophin requirements and axonal projections between the sensory periphery and the brainstem. In rodents, the whisker pad (WP) is a major peripheral target of the infraorbital (IO) nerve component of the TG. The chick IO nerve is much smaller and innervates the maxillary process (MP). In the embryonic WP, IO axons course in fascicles from a caudal to rostral direction and form terminal plexuses around follicles. In the chick, IO axons travel as a thin bundle to the MP and branch out with no specific patterning. We cocultured E15 rat TG with E5-6 chick MP or chick TG with rat WP explants to examine target influences on trigeminal axon growth patterns as visualized with DiI labeling or neurofilament immunohistochemistry. Chick TG axons showed robust growth into WP explants, and the ganglion increased in size. Thick bundles of axons traveled between rows of follicles and formed a distinct pattern as they developed terminal arbors around individual follicles. In contrast, rat TG axon growth was sparse in chick MP explants and the ganglion size reduced over time. Furthermore, rat TG axons did not show any patterning in the chick MP. Similar target-specific growth patterns were observed when TG explants were given a choice between chick MP and rat WP explants. Collectively these results indicate that both the chick and rat TG cells respond to similar target-specific peripheral cues in the establishment of innervation density and patterning in peripheral orofacial targets.


Asunto(s)
Axones/fisiología , Quimera/embriología , Ganglio del Trigémino/citología , Ganglio del Trigémino/embriología , Animales , Diferenciación Celular/fisiología , Embrión de Pollo , Técnicas de Cocultivo , Femenino , Neuronas Aferentes/ultraestructura , Embarazo , Ratas , Ratas Sprague-Dawley , Vibrisas/inervación
5.
J Comp Neurol ; 438(4): 377-87, 2001 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-11559894

RESUMEN

Nerve growth factor (NGF) and related neurotrophins induce differential axon growth patterns from embryonic sensory neurons (Lentz et al. [1999] J. Neurosci. 19:1038-1048; Ulupinar et al. [2000a] J. Comp. Neurol 425:622-630). In wholemount explant cultures of embryonic rat trigeminal ganglion and brainstem or in dissociated cell cultures of the trigeminal ganglion, exogenous supply of NGF leads to axonal elongation, whereas neurotrophin-3 (NT-3) treatment leads to short branching and arborization (Ulupinar et al. [2000a] J. Comp. Neurol. 425:622-630). Axonal responses to neurotrophins might be mediated via the Rho GTPases. To investigate this possibility, we prepared wholemount trigeminal pathway cultures from E15 rats. We infected the ganglia with recombinant vaccinia viruses that express GFP-tagged dominant negative Rac, Rho, or constitutively active Rac or treated the cultures with lysophosphatitic acid (LPA) to activate Rho. We then examined axonal responses to NGF by use of the lipophilic tracer DiI. Rac activity induced longer axonal growth from the central trigeminal tract, whereas the dominant negative construct of Rac eliminated NGF-induced axon outgrowth. Rho activity also significantly reduced, and the Rho dominant negative construct increased, axon growth from the trigeminal tract. Similar alterations in axonal responses to NT-3 and brain-derived neurotrophic factor were also noted. Our results demonstrate that Rho GTPases play a major role in neurotrophin-induced axonal differentiation of embryonic trigeminal axons.


Asunto(s)
Vectores Genéticos/fisiología , Conos de Crecimiento/ultraestructura , Factores de Crecimiento Nervioso/farmacología , Neuronas Aferentes/citología , Ganglio del Trigémino/embriología , Proteínas de Unión al GTP rho/metabolismo , Vías Aferentes/efectos de los fármacos , Vías Aferentes/embriología , Vías Aferentes/enzimología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Carbocianinas/farmacocinética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Tamaño de la Célula/efectos de los fármacos , Tamaño de la Célula/fisiología , Feto , Colorantes Fluorescentes/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/enzimología , Inmunohistoquímica , Lisofosfolípidos/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Factores de Crecimiento Nervioso/metabolismo , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/enzimología , Neurotrofina 3/metabolismo , Neurotrofina 3/farmacología , Ratas , Ratas Sprague-Dawley , Transfección , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/enzimología , Núcleos del Trigémino/efectos de los fármacos , Núcleos del Trigémino/embriología , Núcleos del Trigémino/enzimología , Virus Vaccinia/genética , Proteínas de Unión al GTP rac/efectos de los fármacos , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rho/efectos de los fármacos , Proteínas de Unión al GTP rho/genética
6.
Trends Neurosci ; 24(10): 589-95, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11576673

RESUMEN

A major portion of the primary somatosensory cortex of rodents is characterized by the discrete and patterned distribution of thalamocortical axons and layer IV granule cells ('barrels'), which correspond to the spatial distribution of whiskers and sinus hairs on the snout. In recent years several mutant mouse models began unveiling the cellular and molecular mechanisms by which these patterns emerge presynaptically and are reflected postsynaptically. Neural activity plays a crucial role in conferring presynaptic patterns to postsynaptic cells via neurotransmitter receptor-mediated intracellular signals. Here we review recent evidence that is finally opening the doors to understanding the cellular and molecular mechanisms of pattern formation in the neocortex.


Asunto(s)
Neocórtex/fisiología , Corteza Somatosensorial/fisiología , Animales , Vibrisas/inervación
7.
J Neurophysiol ; 85(3): 1088-96, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11247979

RESUMEN

In the brain stem trigeminal complex of rats and mice, presynaptic afferent arbors and postsynaptic target cells form discrete modules ("barrelettes"), the arrangement of which duplicates the patterned distribution of whiskers and sinus hairs on the ipsilateral snout. Within the barrelette region of the nucleus principalis of the trigeminal nerve (PrV), neurons participating in barrelettes and those with dendritic spans covering multiple barrelettes (interbarrelette neurons) can be identified by their morphological and electrophysiological characteristics as early as postnatal day 1. Barrelette cells have focal dendritic processes, are characterized by a transient K(+) conductance (I(A)), whereas interbarrelette cells with larger soma and extensive dendritic fields characteristically exhibit low-threshold T-type Ca(2+) spikes (LTS). In this study, we surveyed membrane properties of barrelette and interbarrelette neurons during and after consolidation of barrelettes in the PrV and effects of peripheral deafferentation on these properties. During postnatal development (PND1-13), there were no changes in the resting potential, composition of active conductances and Na(+) spikes of both barrelette and interbarrelette cells. The only notable changes were a decline in input resistance and a slight increase in the amplitude of LTS. The infraorbital (IO) branch of the trigeminal nerve provides the sole afferent input source to the whisker pad. IO nerve transection at birth abolishes barrelette formation as well as whisker-related neuronal patterns all the way to the neocortex. Surprisingly this procedure had no effect on membrane properties of PrV neurons. The results of the present study demonstrate that distinct membrane properties of barrelette and interbarrelette cells are maintained even in the absence of input from the whiskers during the critical period of pattern formation.


Asunto(s)
Membrana Celular/fisiología , Neuronas/fisiología , Núcleos del Trigémino/fisiología , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Desnervación , Impedancia Eléctrica , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Neuronas/clasificación , Neuronas/citología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Nervio Trigémino/fisiología , Nervio Trigémino/cirugía , Núcleos del Trigémino/citología , Vibrisas/inervación
8.
Nature ; 406(6797): 726-31, 2000 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-10963597

RESUMEN

In the rodent primary somatosensory cortex, the configuration of whiskers and sinus hairs on the snout and of receptor-dense zones on the paws is topographically represented as discrete modules of layer IV granule cells (barrels) and thalamocortical afferent terminals. The role of neural activity, particularly activity mediated by NMDARs (N-methyl-D-aspartate receptors), in patterning of the somatosensory cortex has been a subject of debate. We have generated mice in which deletion of the NMDAR1 (NR1) gene is restricted to excitatory cortical neurons, and here we show that sensory periphery-related patterns develop normally in the brainstem and thalamic somatosensory relay stations of these mice. In the somatosensory cortex, thalamocortical afferents corresponding to large whiskers form patterns and display critical period plasticity, but their patterning is not as distinct as that seen in the cortex of normal mice. Other thalamocortical patterns corresponding to sinus hairs and digits are mostly absent. The cellular aggregates known as barrels and barrel boundaries do not develop even at sites where thalamocortical afferents cluster. Our findings indicate that cortical NMDARs are essential for the aggregation of layer IV cells into barrels and for development of the full complement of thalamocortical patterns.


Asunto(s)
Tipificación del Cuerpo/fisiología , Vías Nerviosas/embriología , Receptores de N-Metil-D-Aspartato/fisiología , Corteza Somatosensorial/embriología , Animales , Tronco Encefálico/embriología , Diferenciación Celular , Cruzamientos Genéticos , Femenino , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/fisiología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/genética , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Tálamo/embriología , Factores de Transcripción , Vibrisas/embriología
9.
J Comp Neurol ; 425(2): 202-18, 2000 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-10954840

RESUMEN

We examined the effects of neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) on trigeminal axon growth patterns. Embryonic (E13-15) wholemount explants of the rat trigeminal pathway including the whisker pads, trigeminal ganglia, and brainstem were cultured in serum-free medium (SFM) or SFM supplemented with NGF or NT-3 for 3 days. Trigeminal axon growth patterns were analyzed with the use of lipophilic tracer DiI. In wholemount cultures grown in SFM, trigeminal axon projections, growth patterns, and differentiation of peripheral and central targets are similar to in vivo conditions. We show that in the presence of NGF, central trigeminal axons leave the tract and grow into the surrounding brainstem regions in the elongation phase without any branching. On the other hand, NT-3 promotes precocious development of short axon collaterals endowed with focal arbors along the sides of the central trigeminal tract. These neurotrophins also affect trigeminal axon growth within the whisker pad. Additionally, we cultured dissociated trigeminal ganglion cells in the presence of NGF, NT-3, or NGF+NT-3. The number of trigeminal ganglion cells, their size distribution under each condition were charted, and axon growth was analyzed following immunohistochemical labeling with TrkA and parvalbumin antibodies. In these cultures too, NGF led to axon elongation and NT-3 to axon arborization. Our in vitro analyses suggest that aside from their survival promoting effects, NGF and NT-3 can differentially influence axon growth patterns of embryonic trigeminal neurons.


Asunto(s)
Vías Aferentes/efectos de los fármacos , Vías Aferentes/embriología , Axones/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Neurotrofina 3/farmacología , Nervio Trigémino/efectos de los fármacos , Nervio Trigémino/embriología , Vías Aferentes/citología , Animales , Axones/metabolismo , Axones/ultraestructura , Biomarcadores/análisis , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/embriología , Femenino , Feto , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Factor de Crecimiento Nervioso/metabolismo , Neurotrofina 3/metabolismo , Técnicas de Cultivo de Órganos , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/efectos de los fármacos , Sistema Nervioso Periférico/embriología , Embarazo , Ratas , Ratas Sprague-Dawley , Nervio Trigémino/citología
10.
J Neurophysiol ; 82(5): 2765-75, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10561443

RESUMEN

In the rodent brain stem trigeminal complex, select sets of neurons form modular arrays or "barrelettes," that replicate the patterned distribution of whiskers and sinus hairs on the ipsilateral snout. These cells detect the patterned input from the trigeminal axons that innervate the whiskers and sinus hairs. Other brain stem trigeminal cells, interbarrelette neurons, do not form patterns and respond to multiple whiskers. We examined the membrane properties and synaptic responses of morphologically identified barrelette and interbarrelette neurons in the principal sensory nucleus (PrV) of the trigeminal nerve in early postnatal rats shortly after whisker-related patterns are established. Barrelette cell dendritic trees are confined to a single barrelette, whereas the dendrites of interbarrelette cells span wider territories. These two cell types are distinct from smaller GABAergic interneurons. Barrelette cells can be distinguished by a prominent transient A-type K(+) current (I(A)) and higher input resistance. On the other hand, interbarrelette cells display a prominent low-threshold T-type Ca(2+) current (I(T)) and lower input resistance. Both classes of neurons respond differently to electrical stimulation of the trigeminal tract. Barrelette cells show either a monosynaptic excitatory postsynaptic potential (EPSP) followed by a large disynaptic inhibitory postsynaptic potential (IPSP) or just simply a disynaptic IPSP. Increasing stimulus intensity produces little change in EPSP amplitude but leads to a stepwise increase in IPSP amplitude, suggesting that barrelette cells receive more inhibitory input than excitatory input. This pattern of excitation and inhibition indicates that barrelette cells receive both feed-forward and lateral inhibition. Interbarrelette cells show a large monosynaptic EPSP followed by a small disynaptic IPSP. Increasing stimulus intensity leads to a stepwise increase in EPSP amplitude and the appearance of polysynaptic EPSPs, suggesting that interbarrelette cells receive excitatory inputs from multiple sources. Taken together, these results indicate that barrelette and interbarrelette neurons can be identified by their morphological and functional attributes soon after whisker-related pattern formation in the PrV.


Asunto(s)
Neuronas/fisiología , Sinapsis/fisiología , Nervio Trigémino/fisiología , Núcleos del Trigémino/fisiología , 4-Aminopiridina/farmacología , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Mapeo Encefálico , Membrana Celular/fisiología , Cesio/farmacología , Cloruros/farmacología , Estimulación Eléctrica , Cabello , Técnicas In Vitro , Potenciales de la Membrana , Modelos Neurológicos , Neuronas/efectos de los fármacos , Níquel/farmacología , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Tálamo/fisiología , Vibrisas/inervación
11.
Mol Cell Neurosci ; 13(4): 281-92, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10328887

RESUMEN

Semaphorins are a large family of secreted and transmembrane glycoproteins. Sema III, a member of the Class III semaphorins is a potent chemorepulsive signal for subsets of sensory axons and steers them away from tissue regions with high levels of expression. Previous studies in mutant mice lacking sema III gene showed various neural and nonneural abnormalities. In this study, we focused on the developing trigeminal pathway of sema III knockout mice. We show that the peripheral and central trigeminal projections are impaired during initial pathway formation when they develop into distinct nerves or tracts. These axons defasciculate and compromise the normal bundling of nerves and restricted alignment of the central tract. In contrast to trigeminal projections, thalamocortical projections to the barrel cortex appear normal. Furthermore, sema III receptor, neuropilin, is expressed during a short period of development when the tract is laid down, but not in the developing thalamocortical pathway. Peripherally, trigeminal axons express neuropilin for longer duration than their central counterparts. In spite of projection errors, whisker follicle innervation appears normal and whisker-related patterns form in the trigeminal nuclei and upstream thalamic and cortical centers. Our observations suggest that sema III plays a limited role during restriction of developing trigeminal axons to proper pathways and tracts. Other molecular and cellular mechanisms must act in concert with semaphorins in ensuring target recognition, topographic order of projections, and patterning of neural connections.


Asunto(s)
Glicoproteínas/fisiología , Ganglio del Trigémino/embriología , Animales , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiología , Desarrollo Embrionario y Fetal/fisiología , Glicoproteínas/genética , Ratones , Ratones Noqueados/genética , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/embriología , Neuropilina-1 , Semaforina-3A , Corteza Somatosensorial/embriología , Transmisión Sináptica/fisiología , Tálamo/embriología , Vibrisas/inervación
12.
Mol Cell Neurosci ; 12(4-5): 206-19, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9828086

RESUMEN

Whisker pad innervation and whisker-specific pattern formation were examined in mice lacking the gene for activin betaA or for follistatin. Both strains of mice die within 24 h after birth. A normal array of whisker follicles is present in the snout of either phenotype. However, activin betaA-deficient mice lack whiskers, and in follistatin-deficient mice the whiskers are thin and curled. We examined the effects of aberrant, albeit innervated, follicles on the formation of whisker-specific patterns (barrelettes) in the trigeminal brainstem. Activin betaA knockout mice lack barrelettes, although the trigeminal afferent topography is not compromised. Physiological recordings suggest that trigeminal ganglion cells in these mice are less responsive to stimulation of whisker follicles. Barrelettes in follistatin-deficient mice are not as well developed as in controls, but can be discerned in some cases. These results are consistent with the notion that formation of barrelettes depends on neural activity initiated by the whiskers.


Asunto(s)
Tronco Encefálico/fisiología , Glicoproteínas/fisiología , Sustancias de Crecimiento/fisiología , Inhibinas/fisiología , Vibrisas/anomalías , Activinas , Animales , Axones/fisiología , Tronco Encefálico/anomalías , Folistatina , Glicoproteínas/deficiencia , Glicoproteínas/genética , Sustancias de Crecimiento/deficiencia , Sustancias de Crecimiento/genética , Inhibinas/deficiencia , Inhibinas/genética , Ratones , Ratones Noqueados , Neuronas/fisiología , Nervio Trigémino/anomalías , Nervio Trigémino/fisiología
13.
J Comp Neurol ; 399(4): 427-39, 1998 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-9741476

RESUMEN

We examined axon-target interactions in cocultures of embryonic rat trigeminal, dorsal root, nodose, superior cervical ganglia or retina with a variety of native or foreign peripheral targets such as the whisker pad, forepaw, and heart explants. Axon growth into these peripheral target tissues was analyzed by the use of lipophilic tracer DiI. Embryonic day 15 dorsal root and trigeminal axons grew into isochronic normal and foreign cutaneous targets. Both axon populations avoided the same age heart tissue, but grew profusely into younger (embryonic day 13) or older (postnatal) heart explants. In contrast, embryonic day 15 superior cervical or nodose ganglion axons grew heavily into the same age heart and forepaw explants and to a lesser extent into the whisker pad explants. Embryonic day 15 retinal axons grew into all three peripheral targets used in this study. Primary sensory and sympathetic axons, but not retinal axons, formed target-specific patterns in the whisker pad and forepaw explants. DiI-labeling and immunostaining of primary sensory neurons in coculture revealed that these neurons retain their bipolar characteristics, and express class-specific markers such as parvalbumin, calcitonin gene-related peptide and TrkA receptors. In the whisker pad explants, axons positive for all three markers were seen to form patterns around the follicles. Our results indicate that developing peripheral targets can attract and support axon growth from a variety of sources. Whereas neurotrophins play a major role in attracting and supporting survival of subpopulations of sensory neurons, other substrate-bound or locally released molecules must regulate sensory neurite growth into specific peripheral and central targets.


Asunto(s)
Ganglios Sensoriales/embriología , Neuritas/fisiología , Nervio Trigémino/embriología , Animales , Axones/fisiología , Carbocianinas , Células Cultivadas , Femenino , Colorantes Fluorescentes , Miembro Anterior/inervación , Ganglios Espinales/embriología , Neuronas Aferentes/citología , Neuronas Aferentes/ultraestructura , Ganglio Nudoso/embriología , Embarazo , Ratas , Ratas Sprague-Dawley , Retina/embriología , Ganglio Cervical Superior/embriología , Vibrisas/inervación
14.
J Neurophysiol ; 79(3): 1295-306, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9497411

RESUMEN

In the brain stem trigeminal nuclei of rodents there is a patterned representation of whiskers and sinus hairs. The subnucleus interpolaris (SPI) contains the largest and the most conspicuous whisker patterns (barrelettes). Although neural activity plays a role in pattern formation, little is known about the electrophysiological properties of developing barrelette neurons. Here we examined the functional state of early postnatal SPI neurons during and after the consolidation of patterns by using in vitro intracellular recording techniques. After the consolidation of barrelettes [>/= postnatal day (P)4], responses to intracellular current injection consistently reflected the activation of a number voltage-dependent conductances. Most notable was a mixed cation conductance (IH) that prevented strong hyperpolarization and a large low-threshold Ca2+ conductance, which led to Ca2+ spikes and burst firing. At the oldest ages tested (P11-P14) some cells also exhibited an outward K+ conductance (IA), which led to significant delays in action-potential firing. Between P0-3, a time when the formation of barrelettes in the brain stem is still susceptible to damage of the sensory periphery, cells responded linearly to intracellular current injection, indicating they either lacked such voltage-gated properties or weakly expressed them. At all ages tested (P0-14), SPI cells were capable of generating trains of action potentials in response to intracellular injection of depolarizing current pulses. However, during the first few days of postnatal life, spikes were shorter and longer. Additionally, spike trains rose more linearly with stimulus intensity and showed frequency accommodation at early ages. Taken together, these results indicate that the electrophysiological properties of SPI neurons change markedly during the period of barrelette consolidation. Moreover, the properties of developing SPI neurons may play a significant role in pattern formation by minimizing signal distortion and ensuring that excitatory responses from sensory periphery are accurately received and transmitted according to stimulus strength.


Asunto(s)
Envejecimiento/fisiología , Mapeo Encefálico , Tronco Encefálico/fisiología , Neuronas/fisiología , Núcleos del Trigémino/fisiología , Vibrisas/inervación , Vías Aferentes/crecimiento & desarrollo , Vías Aferentes/fisiología , Animales , Animales Recién Nacidos , Tronco Encefálico/crecimiento & desarrollo , Estimulación Eléctrica , Electrofisiología , Potenciales de la Membrana , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción , Análisis de Regresión , Núcleos del Trigémino/crecimiento & desarrollo
15.
Brain Res Dev Brain Res ; 101(1-2): 37-47, 1997 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-9263578

RESUMEN

In explant cocultures of the rat trigeminal pathway, embryonic trigeminal ganglion cells grow their axons into peripheral cutaneous and central nervous system targets (R.S. Erzurumlu, S. Jhaveri, Target influences on the morphology of trigeminal axons, Exp. Neurol, 135 (1995) 1-16; R.S. Erzurumlu, S. Jhaveri, H. Takahashi, R.D.G. McKay, Target-derived influences on axon growth modes in explant cocultures of trigeminal neurons, Proc. Natl. Acad. Sci. USA 90 (1993) 7235-7239). In heterochronic cocultures, composed of embryonic trigeminal ganglion, embryonic whisker pad and postnatal brainstem slice, trigeminal axons develop arbors and terminal boutons in the brainstem trigeminal nuclei. To determine whether these terminal arbors establish functional connections with the brainstem neurons, we examined the electrophysiological properties of brainstem neurons and their responsiveness to trigeminal ganglion stimulation. Intracellular recordings were done in vitro on cells of the trigeminal subnucleus interpolaris (SPI) in trigeminal pathway cocultures (E15 whisker pad, E15 trigeminal ganglion, and postnatal day (PND) 0-2 brainstem slice) or in the SPI of acutely prepared brainstem slices. Electrophysiological properties of SPI cells in both preparations were virtually identical. The voltage responses of SPI neurons to intracellular current injection were highly linear suggesting they lacked a number of voltage-dependent conductances. Depolarizing current injection produced trains of action potentials with a frequency that varied with stimulus intensity. In explant cocultures, electrical activation of the trigeminal ganglion evoked EPSPs, and EPSPs coupled with IPSPs in SPI cells. Bicuculline blockade of IPSP activity resulted in long lasting EPSPs whose duration increased with membrane depolarization. These results show that brainstem trigeminal neurons can retain their functional properties in culture and establish functional connections with primary sensory afferents.


Asunto(s)
Comunicación Celular/fisiología , Nervio Trigémino/crecimiento & desarrollo , Animales , Axones/fisiología , Axones/ultraestructura , Electrofisiología , Femenino , Potenciales de la Membrana/fisiología , Vías Nerviosas/citología , Vías Nerviosas/crecimiento & desarrollo , Técnicas de Cultivo de Órganos , Embarazo , Ratas , Ratas Sprague-Dawley , Membranas Sinápticas/metabolismo , Membranas Sinápticas/fisiología , Fijación del Tejido , Ganglio del Trigémino/citología , Ganglio del Trigémino/crecimiento & desarrollo , Nervio Trigémino/citología , Núcleos del Trigémino/citología , Núcleos del Trigémino/crecimiento & desarrollo
16.
J Neurophysiol ; 77(1): 511-6, 1997 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9120593

RESUMEN

An organotypic explant coculture method is described for the developing retinogeniculate pathway of the cat. Retinal explants and thalamic slices containing the dorsal lateral geniculate nucleus (LGN), derived from early postnatal kittens, can be grown in serum-free culture medium for several days. In such cultures, retinal ganglion cells (RGCs) and LGN neurons retained their age-specific morphological features and developed functional connections. Labeling of RGCs and their processes with DiI showed that all three major classes of RGCs (alpha/Y, beta/X, gamma/W) were present in cocultured retinal explants. Retinal axons readily regenerated into thalamic slices and, over time, developed arbors within the LGN. Retrograde labeling from the LGN traced the origin of these axons almost exclusively to alpha-cells in the retina. In vitro intracellular recordings indicated that LGN cells maintained their basic electrophysiological properties in coculture. Current injection generated action potentials, and, at hyperpolarized levels, it led to low-threshold Ca2+ spiking. Regenerated retinal axons also formed functional connections with LGN neurons. Electrical stimulation of the retinal explant elicited excitatory postsynaptic responses (EPSPs) in LGN cells. Drop application of specific glutamate antagonists indicated that EPSPs had both N-methyl-D-aspartate (NMDA) and non-NMDA receptor components. The morphology of the LGN neurons was examined after intracellular injections of biocytin during recording. Labeled cells were very similar to those of early postnatal kittens. Although, in general, they had relatively small soma and simple dendritic branching patterns, a few could be recognized as X- or Y-cells. Thus the coculture model can be used to assay the regenerative propensity of different types of RGCs during development.


Asunto(s)
Cuerpos Geniculados/fisiología , Retina/fisiología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Axones/fisiología , Gatos , Células Cultivadas , Técnicas de Cocultivo , Electrofisiología , Cuerpos Geniculados/citología , Histocitoquímica , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Retina/citología , Células Ganglionares de la Retina/fisiología , Vías Visuales/citología , Vías Visuales/fisiología
17.
Neuron ; 19(6): 1201-10, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9427244

RESUMEN

We have examined the role of NMDA receptor-mediated neural activity in the formation of periphery-related somatosensory patterns, using genetically engineered mice. We demonstrate that ectopic expression of a transgene of an NMDAR1 splice variant rescues neonatally fatal NMDAR1 knockout (KO) mice, although the average life span varies depending on the level of the transgene expression. In NMDAR1 KO mice with "high" levels of the transgene expression, sensory periphery-related patterns were normal along both the trigeminal and dorsal column pathways. In the KO mice with "low" levels of the transgene expression, the patterns were absent in the trigeminal pathway. Our results indicate that NMDA receptor-mediated neural activity plays a critical role in pattern formation along the ascending somatosensory pathways.


Asunto(s)
Encéfalo/fisiología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/biosíntesis , Nervio Trigémino/fisiología , Empalme Alternativo , Animales , Complejo IV de Transporte de Electrones/análisis , Electrofisiología , Ingeniería Genética , Variación Genética , Hibridación in Situ , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos , NADPH Deshidrogenasa/análisis , Técnicas de Placa-Clamp , Receptores de N-Metil-D-Aspartato/deficiencia , Receptores de N-Metil-D-Aspartato/genética
18.
J Comp Neurol ; 374(1): 41-51, 1996 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-8891945

RESUMEN

We have addressed the issue of whether or not peripherally expressed nerve growth factor (NGF) influences the formation of whisker-specific patterns in the brain by regulating the survival of sensory neurons. Transgenic mice that overexpress an NGF cDNA in the skin were examined. In these animals, excess NGF expression is controlled by promoter and enhancer sequences of a keratin gene, thus restricting the higher levels of NGF expression to basal keratinocytes of the epidermis. Twice the number of trigeminal sensory neurons survive in transgenic mice as in normal animals, and a corresponding hyperinnervation of the whisker pad is noted, both around the vibrissa follicles and along the intervibrissal epidermis. However, the increased survival of sensory neurons and the enhanced peripheral projections do not interfere with the development of whisker-specific patterns in the trigeminal brainstem, in the ventrobasal thalamic complex or in the face-representation region of the primary somatosensory (SI) cortex. These results demonstrate that vibrissa-related central patterns are able to form in the virtual absence of trigeminal ganglion cell death and suggest that mechanisms other than a selective elimination of sensory neurons control the development of whisker-specific neural patterns in the brain.


Asunto(s)
ADN Complementario/biosíntesis , Queratinocitos/metabolismo , Factores de Crecimiento Nervioso/biosíntesis , Nervios Periféricos/metabolismo , Ganglio del Trigémino/metabolismo , Vibrisas/inervación , Animales , Tronco Encefálico/metabolismo , Recuento de Células , Elementos de Facilitación Genéticos , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/fisiología , Neuronas Aferentes/citología , Regiones Promotoras Genéticas , Corteza Somatosensorial/metabolismo , Tálamo/metabolismo
19.
Cereb Cortex ; 6(3): 377-87, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8670665

RESUMEN

Acetylcholinesterase (AChE) is transiently expressed in several immature axon systems. Its presence in developing thalamocortical afferents has led to the use of enzyme histochemistry to visualize this axon system in rats. Because of the spatiotemporal distribution of the enzyme in the rat neocortex, it has been suggested that AChE plays a role in the establishment of thalamocortical connectivity. We show here that AChE is distributed in a pattern that is markedly different in SI cortex of rats as compared to that of mice and hamsters. In rat pups, AChE-rich patches are distributed in a vibrissa-related array in the SI cortex soon after birth, whereas regions of cortex that lie between individual patches, and between rows of patches, are impoverished in the enzyme. In contrast, sections through flattened cortices from PND3 and older mice and hamsters reveal lightly stained AChE-positive spots in the center of barrel cores, while barrel walls remain devoid of AChE; septae that divide individual barrels are densely enzyme positive. Differences in laminar localization of the enzyme for all three species are also visible. In the thalamus of postnatal rats, both the ventral posterior medial (VPM) and ventral posterior lateral (VPL) nuclei express AChE, correlating with the presence of enzyme-containing patches throughout the barrelfield cortex. In the other two rodents, however, the enzyme is present in VPL but not in VPM, despite the fact that in these species the cortical barrels associated with both thalamic nuclei have very little of the enzyme. Thus, the relationship between the distribution of AChE in nuclei of the thalamic ventrobasal complex and the presence of AChE in the terminals of their cortical axons in the barrelfield is not consistent across different rodent species. Our results call for caution in the use of AChE histochemistry as a universal marker for immature thalamocortical axons, and challenge the generality of currently hypothesized roles for this transiently expressed enzyme during the development of the rodent thalamocortical projection.


Asunto(s)
Acetilcolinesterasa/biosíntesis , Corteza Somatosensorial/enzimología , Vibrisas/fisiología , Animales , Axones/enzimología , Carbocianinas , Cricetinae , Colorantes Fluorescentes , Histocitoquímica , Mesocricetus , Ratones , Vías Nerviosas/enzimología , Vías Nerviosas/crecimiento & desarrollo , Piamadre/enzimología , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/crecimiento & desarrollo , Especificidad de la Especie , Tálamo/enzimología , Tálamo/crecimiento & desarrollo
20.
Vis Neurosci ; 13(2): 359-74, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8737287

RESUMEN

The early development of the optic tract in hamsters was studied by labeling retinal axons with Dil applied to the eye, and then examining the labeled axons in flatmount preparations of the rostral brain stem. This technique permits a panoramic view of the entire retinal projection, from the chiasm to the caudal end of the superior colliculus. In the E11 embryo, retinal axons have reached the chiasm. They defasciculate as they emerge from the nerve, prior to reaching the ventral midline of the diencephalon, then converge again as they pass over to the opposite side. At the midline, many axonal trajectories crisscross, implying some shuffling of relative positions. Retinal axons are tightly bundled within the optic tract. Upon reaching the ventral border of the lateral geniculate body (LGB), they splay out over the nucleus, revealing a wavefront of pioneer axons individually distributed across the rostro-caudal extent of the LGB. Later-emerging retinal axons course over the surface of the thalamus in waves; subsequent waves of axons interdigitate between the lead fibers without fasciculating along them. Past the LGB, the axons undergo a second change in relative positions as the ribbon of fibers swerves caudally, prior to entering the superior colliculus. Retinal axons are tipped with growth cones of varying morphologies. No strong correlation is evident between the structural complexity of the growth cone and its position within the tract. In the majority of cases, ipsilaterally and contralaterally directed axons follow a similar developmental course along the optic tract, without any indication of a temporal lag in the ipsilateral projection as claimed in earlier reports. Understanding the changes in spatial distribution of embryonic retinal axons as they navigate along the optic tract provides a further step towards elucidating how point-to-point projections form in developing sensory systems.


Asunto(s)
Axones/fisiología , Quiasma Óptico/embriología , Retina/embriología , Colículos Superiores/embriología , Vías Visuales/embriología , Animales , Cricetinae , Vías Eferentes/fisiología , Embrión de Mamíferos/fisiología , Desarrollo Embrionario y Fetal/fisiología , Femenino , Cuerpos Geniculados/embriología , Cuerpos Geniculados/ultraestructura , Mesocricetus , Quiasma Óptico/ultraestructura , Retina/ultraestructura , Colículos Superiores/ultraestructura , Vías Visuales/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA