Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Biophys J ; 48(2): 161-171, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30607446

RESUMEN

How geomagnetic field information is collected and processed by insects for orientation and navigation remains elusive. In social insects, magnetic particles are well accepted as magnetic sensors. Ants have the ability to home and hunt, and some migratory and nomadic species can migrate or move over long distances for which magnetoreception is an important mechanism. It was shown previously that ferromagnetic resonance (FMR) spectral parameters of one migratory and one nomadic ant could be distinguished from Brazilian Solenopsis ant species and that these parameters correlate to the local geomagnetic field. The present work focuses on genera engaged in long-distance group raids and emigration collected mainly in the Amazon rainforest. A diversity of specimens of the genus was individually measured by FMR. Cluster analysis of the occurrence of the FMR Low Field component, associated with large or aggregated nanoparticles, and their spectral angular dependence resulted in a phylogenetic dendrogram of the genera of ants, principally from the North Brazilian region. The magnetic material characteristics of ants of the Invertebrate Collection from the Museum Paraense Emilio Goeldi were tested looking for their relation to ant genera and the local geomagnetic field. The observed spectral differences of the magnetic particles suggest that they are related to their capacity for adaptation to their environment and/or to displacement behaviour.


Asunto(s)
Adaptación Fisiológica , Hormigas/fisiología , Ambiente , Fenómenos Magnéticos , Animales , Análisis por Conglomerados
2.
Eur Biophys J ; 47(6): 641-653, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29594412

RESUMEN

Ferritin has been studied in many animals, plants and bacteria. The main functions of ferritin in mammals are iron concentration and stabilization, protection against oxidants and iron storage for later developmental or iron-dependent activities. Although insect ferritin plays a key role in iron transport, only a few studies to date have examined its properties and function. Ferritin isolation from the haemolymph of adult Camponotus sericeiventris ants involved heating at 75 °C, followed by protein fractionation with 3.2 M KBr gradients and ferritin sedimentation with KBr. Protein identification was performed using high-resolution proteomics techniques. SDS-PAGE revealed three subunits with molecular weights (MW) of 26, 28 and 31 kDa. Native PAGE indicated a MW higher than 669 kDa. Proteomic analysis strongly suggested the 26 and 31 kDa bands as F2LCH and F1HCH subunits of ferritin, respectively. Ferromagnetic resonance (FMR) at 100 K showed, at low field, a characteristic broad component of the ferritin iron core, suggesting that its distribution was shifted to values greater than 3000, a higher content than in mammals. The protein yield and MW were comparable to those reported in other studies of insects. To the best of our knowledge, this is the first report on ferritin extracted from adult ants to date. These results are discussed on the basis of the protein structure-function relation of secreted insect and mammal ferritins. This purification method will allow the use of magnetic techniques, which are relevant for understanding the role of ferritin in the biomineralization of magnetic nanoparticles in insects.


Asunto(s)
Electroforesis en Gel de Poliacrilamida/métodos , Ferritinas/aislamiento & purificación , Hemolinfa/química , Fenómenos Magnéticos , Animales , Hormigas , Ferritinas/metabolismo , Tripsina/metabolismo
3.
Phys Biol ; 11(3): 036006, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24828297

RESUMEN

Most magnetotactic bacteria (MB) produce stable, single-domain magnetite nanocrystals with species-specific size, shape and chain arrangement. In addition, most crystals are elongated along the [111] direction, which is the easy axis of magnetization in magnetite, chemically pure and structurally perfect. These special characteristics allow magnetite crystal chains from MB to be recognized in environmental samples including old sedimentary rocks. Ferromagnetic resonance (FMR) has been proposed as a powerful and practical tool for screening large numbers of samples possibly containing magnetofossils. Indeed, several studies were recently published on FMR of cultured MB, mainly Magnetospirillum gryphiswaldense. In this work, we examined both uncultured magnetotactic cocci and the cultured MB M. gryphiswaldense using transmission electron microscopy (TEM) and FMR from 10 K to room temperature (RT). The TEM data supported the FMR spectral characteristics of our samples. The FMR spectra of both bacteria showed the intrinsic characteristics of magnetite produced by MB, such as extended absorption at the low field region of the spectra and a Verwey transition around 100 K. As previously observed, the spectra of M. gryphiswaldense isolated crystals were more symmetrical than the spectra obtained from whole cells, reflecting the loss of chain arrangement due to the small size and symmetrical shape of the crystals. However, the FMR spectra of magnetic crystals isolated from magnetotactic cocci were very similar to the FMR spectra of whole cells, because the chain arrangement was maintained due to the large size and prismatic shape of the crystals. Our data support the use of FMR spectra to detect magnetotactic bacteria and magnetofossils in samples of present and past environments. Furthermore, the spectra suggest the use of the temperature transition of spectral peak-to-peak intensity to obtain the Verwey temperature for these systems.


Asunto(s)
Óxido Ferrosoférrico/análisis , Magnetismo/métodos , Magnetosomas/química , Magnetospirillum/citología , Cristalización , Magnetosomas/ultraestructura , Magnetospirillum/química , Magnetospirillum/ultraestructura , Microscopía Electrónica de Transmisión
4.
J R Soc Interface ; 7 Suppl 2: S207-25, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20106876

RESUMEN

Behavioural experiments for magnetoreception in eusocial insects in the last decade are reviewed. Ants and bees use the geomagnetic field to orient and navigate in areas around their nests and along migratory paths. Bees show sensitivity to small changes in magnetic fields in conditioning experiments and when exiting the hive. For the first time, the magnetic properties of the nanoparticles found in eusocial insects, obtained by magnetic techniques and electron microscopy, are reviewed. Different magnetic oxide nanoparticles, ranging from superparamagnetic to multi-domain particles, were observed in all body parts, but greater relative concentrations in the abdomens and antennae of honeybees and ants have focused attention on these segments. Theoretical models for how these specific magnetosensory apparatuses function have been proposed. Neuron-rich ant antennae may be the most amenable to discovering a magnetosensor that will greatly assist research into higher order processing of magnetic information. The ferromagnetic hypothesis is believed to apply to eusocial insects, but interest in a light-sensitive mechanism is growing. The diversity of compass mechanisms in animals suggests that multiple compasses may function in insect orientation and navigation. The search for magnetic compasses will continue even after a magnetosensor is discovered in eusocial insects.


Asunto(s)
Conducta Animal/fisiología , Insectos/fisiología , Orientación/fisiología , Orientación/efectos de la radiación , Percepción/fisiología , Percepción/efectos de la radiación , Conducta Social , Animales , Campos Electromagnéticos
5.
Phys Biol ; 6(4): 046012, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19887705

RESUMEN

In this paper, we quantify the magnetic material amount in Solenopsis ants using ferromagnetic resonance (FMR) at room temperature. We sampled S. interrupta workers from several morphologically indistinguishable castes. Twenty-five oriented samples of each body part of S. interrupta (20 units each) showed that FMR line shapes are reproducible. The relative magnetic material amount was 31 +/- 12% (mean +/- SD) in the antennae, 27 +/- 13% in the head, 21 +/- 12% in the thorax and 20 +/- 10% in the abdomen. In order to measure variation in the magnetic material from late summer to early winter, ants were collected each month between March and July. The amount of magnetic material was greatest in all four body parts in March and least in all four body parts in June. In addition, S. richteri majors presented more magnetic material than minor workers. Extending these findings to the genera Solenopsis, the reduction in magnetic material found in winter could be explained by our sampling fewer foraging major ants.


Asunto(s)
Hormigas/química , Hormigas/fisiología , Magnetismo , Estaciones del Año , Abdomen , Animales , Hormigas/anatomía & histología , Interpretación Estadística de Datos , Espectroscopía de Resonancia por Spin del Electrón , Programas Informáticos , Temperatura , Tórax
6.
Naturwissenschaften ; 96(6): 685-90, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19283357

RESUMEN

Magnetotactic microorganisms use the interaction of internal biomineralized nanoparticles with the geomagnetic field to orientate. The movement of the magnetotactic multicellular prokaryote Candidatus Magnetoglobus multicellularis under an applied magnetic field was observed. A method using digital image processing techniques was used to track the organism trajectory to simultaneously obtain its body radius, velocity, U-turn diameter, and the reorientation time. The magnetic moment was calculated using a self-consistent method. The distribution of magnetic moments and radii present two well-characterized peaks at (9 +/- 2) x 10(-15) and (20 +/- 3) x 10(-15) A m(2) and (3.6 +/- 0.1) and (4.3 +/- 0.1) mum, respectively. For the first time, simultaneous determination of the distribution of the organism radii and magnetic moment was obtained from the U-turn method by a new digital imaging processing. The bimodal distributions support an organism reproduction process model based on electron microscopy observations. These results corroborate the prokaryote multicellular hypothesis for Candidatus M. multicellularis.


Asunto(s)
Deltaproteobacteria/fisiología , Brasil , Deltaproteobacteria/crecimiento & desarrollo , Campos Electromagnéticos , Sedimentos Geológicos/microbiología , Magnetismo , Movimiento , Nanopartículas , Orientación , Viscosidad , Microbiología del Agua
7.
Naturwissenschaften ; 94(2): 139-42, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17028885

RESUMEN

Six behavioural experiments were carried out to investigate the magnetic field effects on the nest-exiting flight directions of the honeybee Schwarziana quadripunctata (Meliponini). No significant differences resulted during six experiment days under varying geomagnetic field and the applied static inhomogeneous field (about ten times the geomagnetic field) conditions. A surprising statistically significant response was obtained on a unique magnetic storm day. The magnetic nanoparticles in these bees, revealed by ferromagnetic resonance, could be involved in the observed effect of the geomagnetic storm.


Asunto(s)
Abejas/fisiología , Conducta Animal , Campos Electromagnéticos , Conceptos Meteorológicos , Animales , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...