Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Chaos ; 31(3): 033152, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33810758

RESUMEN

The ubiquitous coupled relationship between network systems has become an essential paradigm to depict complex systems. A remarkable property in the coupled complex systems is that a functional node should have multiple external support associations in addition to maintaining the connectivity of the local network. In this paper, we develop a theoretical framework to study the structural robustness of the coupled network with multiple useful dependency links. It is defined that a functional node has the broadest connectivity within the internal network and requires at least M support link of the other network to function. In this model, we present exact analytical expressions for the process of cascading failures, the fraction of functional nodes in the stable state, and provide a calculation method of the critical threshold. The results indicate that the system undergoes an abrupt phase transition behavior after initial failure. Moreover, the minimum inner and inter-connectivity density to maintain system survival is graphically presented at different multiple effective dependency links. Furthermore, we find that the system needs more internal connection densities to avoid collapse when it requires more effective support links. These findings allow us to reveal the details of a more realistic coupled complex system and develop efficient approaches for designing resilient infrastructure.

2.
Chaos ; 31(12): 123122, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34972350

RESUMEN

The cascading spreading process in social and economic networks is more complicated than that in physical systems. These networks' multiple nodes and edges increase their structural complexity and recoverability, enabling the system to lose partial functionality rather than completely fail. However, these phenomena in social and economic networks introduce challenges to the existing network robustness models, where a node is either in a functional state or a failed state. This research uses a network of networks (NoN) to simulate multiple types of nodes and edges. A non-failure cascading process is utilized to model the nodes' self-adaptation and recoverability. The main contribution of this research is proposing a spreading model to extend the non-failure cascading process to the NoN, which can be used in predicting real-world system damage suffering from special events. The case study of this research evaluated the effect degree of crude oil trade changes on each sector from 2015 to 2016.

3.
Chaos ; 29(5): 053130, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31154772

RESUMEN

Synchronization in complex networks characterizes what happens when an ensemble of oscillators in a complex autonomous system become phase-locked. We study the Kuramoto model with a tunable phase-lag parameter α in the coupling term to determine how phase shifts influence the synchronization transition. The simulation results show that the phase frustration parameter leads to desynchronization. We find two global synchronization regions for α∈[0,2π) when the coupling is sufficiently large and detect a relatively rare network synchronization pattern in the frustration parameter near α=π. We call this frequency-locking configuration as "repulsive synchronization," because it is induced by repulsive coupling. Since the repulsive synchronization cannot be described by the usual order parameter r, the parameter frequency dispersion is introduced to detect synchronization.

4.
Proc Biol Sci ; 286(1900): 20190041, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30940065

RESUMEN

Cooperation is key to the survival of all biological systems. The spatial structure of a system constrains who interacts with whom (interaction partner) and who acquires new traits from whom (role model). Understanding when and to what degree a spatial structure affects the evolution of cooperation is an important and challenging topic. Here, we provide an analytical formula to predict when natural selection favours cooperation where the effects of a spatial structure are described by a single parameter. We find that a spatial structure promotes cooperation (spatial reciprocity) when interaction partners overlap role models. When they do not, spatial structure inhibits cooperation even without cooperation dilemmas. Furthermore, a spatial structure in which individuals interact with their role models more often shows stronger reciprocity. Thus, imitating individuals with frequent interactions facilitates cooperation. Our findings are applicable to both pairwise and group interactions and show that strong social ties might hinder, while asymmetric spatial structures for interaction and trait dispersal could promote cooperation.


Asunto(s)
Evolución Biológica , Conducta Cooperativa , Selección Genética , Animales , Humanos , Modelos Biológicos
5.
Chaos ; 29(2): 021101, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30823717

RESUMEN

We thoroughly study the robustness of partially interdependent networks when suffering attack combinations of random, targeted, and localized attacks. We compare analytically and numerically the robustness of partially interdependent networks with a broad range of parameters including coupling strength, attack strength, and network type. We observe the first and second order phase transition and accurately characterize the critical points for each combined attack. Generally, combined attacks show more efficient damage to interdependent networks. Besides, we find that, when robustness is measured by the critical removing ratio and the critical coupling strength, the conclusion drawn for a combined attack is not always consistent.

6.
Chaos ; 28(1): 013120, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29390629

RESUMEN

What we are learning about the ubiquitous interactions among multiple social contagion processes on complex networks challenges existing theoretical methods. We propose an interactive social behavior spreading model, in which two behaviors sequentially spread on a complex network, one following the other. Adopting the first behavior has either a synergistic or an inhibiting effect on the spread of the second behavior. We find that the inhibiting effect of the first behavior can cause the continuous phase transition of the second behavior spreading to become discontinuous. This discontinuous phase transition of the second behavior can also become a continuous one when the effect of adopting the first behavior becomes synergistic. This synergy allows the second behavior to be more easily adopted and enlarges the co-existence region of both behaviors. We establish an edge-based compartmental method, and our theoretical predictions match well with the simulation results. Our findings provide helpful insights into better understanding the spread of interactive social behavior in human society.

7.
Chaos ; 27(2): 023104, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28249401

RESUMEN

To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.

8.
Rep Prog Phys ; 80(3): 036603, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28176679

RESUMEN

Models of epidemic spreading on complex networks have attracted great attention among researchers in physics, mathematics, and epidemiology due to their success in predicting and controlling scenarios of epidemic spreading in real-world scenarios. To understand the interplay between epidemic spreading and the topology of a contact network, several outstanding theoretical approaches have been developed. An accurate theoretical approach describing the spreading dynamics must take both the network topology and dynamical correlations into consideration at the expense of increasing the complexity of the equations. In this short survey we unify the most widely used theoretical approaches for epidemic spreading on complex networks in terms of increasing complexity, including the mean-field, the heterogeneous mean-field, the quench mean-field, dynamical message-passing, link percolation, and pairwise approximation. We build connections among these approaches to provide new insights into developing an accurate theoretical approach to spreading dynamics on complex networks.

9.
Sci Rep ; 5: 14286, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26387609

RESUMEN

Estimating the critical points at which complex systems abruptly flip from one state to another is one of the remaining challenges in network science. Due to lack of knowledge about the underlying stochastic processes controlling critical transitions, it is widely considered difficult to determine the location of critical points for real-world networks, and it is even more difficult to predict the time at which these potentially catastrophic failures occur. We analyse a class of decaying dynamic networks experiencing persistent failures in which the magnitude of the overall failure is quantified by the probability that a potentially permanent internal failure will occur. When the fraction of active neighbours is reduced to a critical threshold, cascading failures can trigger a total network failure. For this class of network we find that the time to network failure, which is equivalent to network lifetime, is inversely dependent upon the magnitude of the failure and logarithmically dependent on the threshold. We analyse how permanent failures affect network robustness using network lifetime as a measure. These findings provide new methodological insight into system dynamics and, in particular, of the dynamic processes of networks. We illustrate the network model by selected examples from biology, and social science.


Asunto(s)
Seguridad Computacional , Servicios de Información , Modelos Teóricos
10.
J Chem Phys ; 136(4): 044511, 2012 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-22299895

RESUMEN

Methanol is an amphiphilic solute whose aqueous solutions exhibit distinctive physical properties. The volume change upon mixing, for example, is negative across the entire composition range, indicating strong association. We explore the corresponding behavior of a Jagla solvent, which has been previously shown to exhibit many of the anomalous properties of water. We consider two models of an amphiphilic solute: (i) a "dimer" model, which consists of one hydrophobic hard sphere linked to a Jagla particle with a permanent bond, and (ii) a "monomer" model, which is a limiting case of the dimer, formed by concentrically overlapping a hard sphere and a Jagla particle. Using discrete molecular dynamics, we calculate the thermodynamic properties of the resulting solutions. We systematically vary the set of parameters of the dimer and monomer models and find that one can readily reproduce the experimental behavior of the excess volume of the methanol-water system as a function of methanol volume fraction. We compare the pressure and temperature dependence of the excess volume and the excess enthalpy of both models with experimental data on methanol-water solutions and find qualitative agreement in most cases. We also investigate the solute effect on the temperature of maximum density and find that the effect of concentration is orders of magnitude stronger than measured experimentally.


Asunto(s)
Modelos Químicos , Tensoactivos/química , Metanol/química , Soluciones/química , Solventes/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA