Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Chem Sci ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39246352

RESUMEN

Dialkyldiazirines have emerged as a photo-reactive group of choice for interactome mapping in live cell experiments. Upon irradiation, 'linear' dialkyldiazirines produce dialkylcarbenes which are susceptible to both intramolecular reactions and unimolecular elimination processes, as well as diazoalkanes, which also participate in intermolecular labeling. Cyclobutylidene has a nonclassical bonding structure and is stable enough to be captured in bimolecular reactions. Cyclobutanediazirines have more recently been studied as photoaffinity probes based on cyclobutylidene, but the mechanism, especially with respect to the role of putative diazo intermediates, was not fully understood. Here, we show that photolysis (365 nm) of cyclobutanediazirines can produce cyclobutylidene intermediates as evidenced by formation of their expected bimolecular and unimolecular products, including methylenecyclopropane derivatives. Unlike linear diazirines, cyclobutanediazirine photolysis in the presence of tetramethylethylene produces a [2 + 1] cycloaddition adduct. By contrast, linear diazirines produce diazo compounds upon low temperature photolysis in THF, whereas diazo compounds are not detected in similar photolyses of cyclobutanediazirines. Diazocyclobutane, prepared by independent synthesis, is labile, reactive toward water and capable of protein alkylation. The rate of diazocyclobutane decomposition is not affected by 365 nm light, suggesting that the photochemical conversion of diazocyclobutane to cyclobutylidene is not an important pathway. Finally, chemical proteomic studies revealed that a likely consequence of this primary conversion to a highly reactive carbene is a marked decrease in labeling by cyclobutanediazirine-based probes relative to linear diazirine counterparts both at the individual protein and proteome-wide levels. Collectively, these observations are consistent with a mechanistic picture for cyclobutanediazirine photolysis that involves carbene chemistry with minimal formation of diazo intermediates, and contrasts with the photolyses of linear diazirines where alkylation by diazo intermediates plays a more significant role.

3.
Dalton Trans ; 49(45): 16204-16216, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32330218

RESUMEN

The chemical stability of oleate-capped sub-10 nm α- and ß-NaREF4 NPs (RE = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu for α- and RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy for ß-phase NPs) was evaluated under the acidic conditions used for ligand removal towards water dispersibility. It was found that for such small NPs, a pH lower than 3 was necessary for the water transfer to be efficient and to yield well-dispersed ligand-free NPs. In stark contrast to the generally considered good chemical stability of NaREF4, these conditions were observed to pose a risk to phase transformation of the NaREF4 NPs into much larger, hexagonal- or orthorhombic-phase REF3, depending on the NP composition. A correlation between the thermodynamic stability of the α/ß-NaREF4 and the hexagonal/orthorhombic REF3 phases - dictated by the RE ion choice - and the chemical stability of the NPs was found. For instance, ß-NaGdF4 NPs remained stable, while α-NaGdF4 NPs underwent phase transformation into hexagonal GdF3. More general, NaREF4 NPs based on lighter RE ions were more prone towards phase transformation, while those based on heavier RE ions exhibited stability. Herein, within the RE series, the borderline for phase transformation was identified as Tb/Dy for α-NaREF4 NPs and Sm/Eu for ß-NaREF4 NPs, respectively. Also, given the large interest in luminescent NPs for, e.g. biomedical applications, optically active Ln3+ ions (Ln = Nd, Eu, Tb, Er/Yb) were doped into α/ß-NaGdF4 host NPs, and the dopant influence on the chemical stability was evaluated. Steady state and time-resolved spectroscopy unveiled spectral features characteristic for Ln3+ f-f transitions, i.e. downshifting and upconversion, before and after ligand removal. Overall, the results herein described emphasise the importance of minding the chemical procedure used for ligand removal of NaREF4 NPs of different crystalline phases and RE compositions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA