Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Phys ; 41(11): 112105, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25370656

RESUMEN

PURPOSE: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. METHODS: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. RESULTS: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. CONCLUSIONS: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an easy implementation of specific peripheral neutron dose models for any type of treatment and facility.


Asunto(s)
Neutrones , Radiometría/instrumentación , Radiometría/métodos , Radioterapia/métodos , Antropometría , Calibración , Estudios de Cohortes , Diseño de Equipo , Humanos , Modelos Estadísticos , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Fantasmas de Imagen , Dosis de Radiación , Radiografía , Dosificación Radioterapéutica , Análisis de Regresión , Reproducibilidad de los Resultados , Medición de Riesgo
2.
Phys Med Biol ; 57(19): 6167-91, 2012 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-22971664

RESUMEN

Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonable assessment of these associated risks. This work aimed to develop a method to estimate neutron-equivalent doses in multiple organs of radiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energy spectra with the kerma and energy-dependent radiation weighting factor. This was then scaled with the total neutron fluence measured with passive detectors, at the same reference points, in order to obtain the equivalent doses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutron fluence. The correlation model, applied to the digital detector readings during patient irradiation, enables the online estimation of neutron-equivalent doses in organs. The model takes into account the specific irradiation site, the field parameters (energy, field size, angle incidence, etc) and the installation (linac and bunker geometry). This method, which is suitable for routine clinical use, will help to systematically generate the dosimetric data essential for the improvement of current risk-estimation models.


Asunto(s)
Neutrones/efectos adversos , Sistemas en Línea , Órganos en Riesgo/efectos de la radiación , Dosis de Radiación , Radioterapia Asistida por Computador/efectos adversos , Radioterapia Asistida por Computador/instrumentación , Aceleración , Humanos , Método de Montecarlo , Fantasmas de Imagen , Terapia de Protones/efectos adversos , Terapia de Protones/instrumentación , Dosificación Radioterapéutica
3.
Med Phys ; 39(6Part17): 3812, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28517456

RESUMEN

PURPOSE: Concerns about the secondary cancer risks associated to the peripheral neutron and photon contamination in photon modern radiotherapy (RT) techniques (e.g., Intensity Modulated RT -IMRT- or Intensity Modulated Arc Therapy -IMAT) have been widely raised. Benefits in terms of better tumor coverage have to be balanced against the drawbacks of poorer organ at risk sparing and secondary cancer risk in order to make the decision on the optimum treatment technique. The aim of this study was to develop a tool which estimates treatment success taking into consideration the neutron secondary cancer probability. METHODS: A methodology and benchmark dataset for radiotherapy real time assessment of patient neutron dose and application to a novel digital detector (DD) has been carried out (submitted to PMB, 2011). Our DD provides real time neutron equivalent dose distribution in relevant organs along the patient. This information, together with TCP and NTCP estimated from the DVH of target and organs at risks, respectively, have been built into a general biological model which allows us to evaluate the success of the treatments (Sánchez-Nieto et al., ESTRO meeting 2012). This model has been applied to make estimation of treatment success in a variety of treatment techniques (3DCRT, forward and inverse IMRT, RapidArc, Volumetric Modulated Arc Therapy and Helical Tomotherapy) to low and high energy. RESULTS: MU-demanding techniques at high energies were able to deliver treatment plans with the highest complicated-free tumour control. Nevertheless, neutron peripheral dose must be taken into consideration as the associated risk could be of the same order of magnitude than the usually considered NTCPs. CONCLUSIONS: The methodology developed to provide an online organ neutron peripheral dose can be successfully combined with biological models to make predictions on treatment success taking into consideration secondary cancer risks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...