RESUMEN
Insectivorous Old World horseshoe bats (Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats (Rousettus aegyptiacus) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats (Eptesicus fuscus) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats (Artibeus jamaicensis) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4+ helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-ß, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptible to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease.
Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Pandemias , Jamaica , Linfocitos T ReguladoresRESUMEN
Insectivorous Old World horseshoe bats ( Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats ( Rousettus aegyptiacus ) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats ( Eptesicus fuscus ) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats ( Artibeus jamaicensis ) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4 + helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-ß, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptibility to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease. Author Summary: Bats are reservoir hosts of many viruses that infect humans, yet little is known about how they host these viruses, principally because of a lack of relevant and susceptible bat experimental infection models. Although SARS-CoV-2 originated in bats, no robust infection models of bats have been established. We determined that Jamaican fruit bats are poorly susceptible to SARS-CoV-2; however, their lungs can be transduced with human ACE2, which renders them susceptible to SARS-CoV-2. Despite robust infection of the lungs and diminishment of pulmonary cellularity, the bats showed no overt signs of disease and cleared the infection after two weeks. Despite clearance of infection, only low-titer antibody responses occurred and only a single bat made neutralizing antibody. Assessment of the CD4 + helper T cell response showed that activated cells expressed the regulatory T cell cytokines IL-10 and TGFß that may have tempered pulmonary inflammation.
RESUMEN
Detection of Leptospira interrogans is difficult as a result of intermittent leptospiruria and brief leptospiremia. Hence, diagnosis relies heavily on serologic testing, the reference method of which is the microscopic agglutination test (MAT). In horses, clinical leptospirosis has been associated with abortion, recurrent uveitis, and sporadic cases of hepatic and renal disease. Little information exists on the seroprevalence of antibodies to L. interrogans in equids in the United States; past nationwide studies suggest that the seroprevalence in some areas is as high as 77% (reciprocal titer ≥ 100). We tested sera from 124 apparently healthy horses previously submitted for equine infectious anemia (EIA) serology using MAT for 6 serovars-Bratislava, Canicola, Grippotyphosa, Hardjo, Icterohaemorrhagiae, and Pomona. When using a reciprocal MAT titer cutoff of ≥ 100, 102 of 124 (82%) of the samples were positive for at least one serovar. Seropositivity was significantly associated with increasing age. Query of specimens from clinical cases submitted to the Colorado State University Veterinary Diagnostic Laboratory for MAT since 2010 indicated significantly greater seroprevalence (p = 0.015) of pathogenic serovar Pomona in clinical cases compared to sera submitted from healthy equids for routine EIA testing. Information from our diagnostic laboratory submission forms also suggests a correlation between uveitis or other ophthalmic problems and serovar Pomona.
Asunto(s)
Enfermedades de los Caballos/epidemiología , Leptospirosis/veterinaria , Factores de Edad , Animales , Anticuerpos Antibacterianos/sangre , Colorado/epidemiología , Femenino , Enfermedades de los Caballos/microbiología , Caballos , Leptospira , Leptospirosis/epidemiología , Leptospirosis/microbiología , Masculino , Prevalencia , Estudios Seroepidemiológicos , SerogrupoRESUMEN
Bats are less vulnerable to forest fragmentation than any other mammal, and for that reason, some species can disperse to peri-urban or urban areas. Insectivorous bats are abundant in urban areas due to the density of artificial roosts and insects attracted by city lights. Inter-species transmission of the rabies virus between bats can occur, and this is the most probable mechanism of virus circulation in bat populations. Bats can also transmit the rabies virus to other mammal species, like dogs and cats. With the halt of dog and cat vaccination campaigns in 2010, the importance of rabies surveillance in bats has increased in Brazil. A cross-sectional study performed in Campinas, Sao Paulo State, using data from the passive surveillance system for bats showed that rabies-positive bats from the families Molossidae, Phyllostomidae and Vespertilionidae were found in a peri-urban area. In these areas, dog and cat emergency vaccination (vaccination blockage) was recommended after the halt of the massive vaccination campaign in 2010. This control strategy was able to increase the proportion of vaccinated animals around a critical value of 50% and even with a higher probability of infectious contact between bats and dogs or cats in the vaccination blockage areas, no dog or cat rabies case was observed, evidencing the importance of the implementation of strategic rabies control measures in this new epidemiological scenario.