Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273413

RESUMEN

Agropyron mongolicum Keng is a diploid perennial grass of triticeae in gramineae. It has strong drought resistance and developed roots that can effectively fix the soil and prevent soil erosion. GDSL lipase or esterases/lipase has a variety of functions, mainly focusing on plant abiotic stress response. In this study, a GDSL gene from A. mongolicum, designated as AmGDSL1, was successfully cloned and isolated. The subcellular localization of the AmGDSL1 gene (pCAMBIA1302-AmGDSL1-EGFP) results showed that the AmGDSL1 protein of A. mongolicum was only localized in the cytoplasm. When transferred into tobacco (Nicotiana benthamiana), the heterologous expression of AmGDSL1 led to enhanced drought tolerance. Under drought stress, AmGDSL1 overexpressing plants showed fewer wilting leaves, longer roots, and larger root surface area. These overexpression lines possessed higher superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and proline (PRO) activities. At the same time, the malondialdehyde (MDA) content was lower than that in wild-type (WT) tobacco. These findings shed light on the molecular mechanisms involved in the GDSL gene's role in drought resistance, contributing to the discovery and utilization of drought-resistant genes in A. mongolicum for enhancing crop drought resistance.


Asunto(s)
Agropyron , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Nicotiana , Proteínas de Plantas , Agropyron/genética , Agropyron/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Sequías , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Lipasa/metabolismo , Lipasa/genética
3.
Front Microbiol ; 13: 1013913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452921

RESUMEN

Sweet sorghum is an important forage in arid and semi-arid climatic regions. This study aimed to reveal the fermentation weight loss (FWL), fermentation quality, and bacterial community of ensiling of sweet sorghum with lactic acid bacteria LAB; (Lactiplantibacillus plantarum and Lentilactobacillus buchneri) at different silo densities. For this study, sweet sorghum was harvested at the first spikelet of inflorescence stage and ensiled without or with LAB (CK or L) in polyethylene laboratory-scale silos (diameter, 20 cm; height, 30 cm) at densities of 650 (CK_650 and L_650), 700 (CK_700 and L_700), and 750 kg/m3 (CK_750 and L_750), respectively. The FWL, fermentation quality, microbial counts, and bacterial community of the silage were assessed after 100 days of ensiling. L_750 had a lower FWL than CK_650, _700, and _750 after 100 days of ensiling (P < 0.005), and the FWL was affected by silo density and inoculating LAB (P < 0.005). All silages had low pH (<4.0) and ammonia nitrogen content (<50 g/kg total nitrogen) and did not contain propionic and butyric acids; moreover, inoculating LAB increased lactic and acetic acids (P < 0.005). Bacterial communities in inoculated and uninoculated silages were clustered together, respectively, and clearly separated from each other. The total abundance of Lactiplantibacillus and Lentilactobacillus in fresh forage was <1%. Lactiplantibacillus had the highest abundance in all silages (from 71.39 to 93.27%), followed by Lentilactobacillus (from 3.59 to 27.63%). Inoculating LAB increased the abundance of Lentilactobacillus in each silo density (P < 0.005) and decreased Lactiplantibacillus in the silage in densities of 700 and 750 kg/m3 (P < 0.005); moreover, increasing silo density decreased Lactiplantibacillus abundance and increased Lentilactobacillus abundance in inoculated silages (P < 0.005). Overall, sweet sorghum silage showed satisfactory fermentation quality, with a density of no <650 kg/m3, and inoculating LAB improved fermentation quality and reduced FWL. Lactiplantibacillus and Lentilactobacillus presented as minor taxa in fresh sweet sorghum and dominated the bacterial community of all silages. Inoculating LAB was the main factor affecting the bacterial community of sweet sorghum silage. Moreover, inoculating LAB and increasing silo density can contribute to the decreasing Lactiplantibacillus abundance and increasing Lentilactobacillus abundance.

4.
Front Plant Sci ; 13: 976684, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061788

RESUMEN

Agropyron mongolicum (A. mongolicum) is an excellent gramineous forage with extreme drought tolerance, which lives in arid and semiarid desert areas. However, the mechanism that underlies the response of microRNAs (miRNAs) and their targets in A. mongolicum to drought stress is not well understood. In this study, we analyzed the transcriptome, small RNAome (specifically the miRNAome) and degradome to generate a comprehensive resource that focused on identifying key regulatory miRNA-target circuits under drought stress. The most extended transcript in each collection is known as the UniGene, and a total of 41,792 UniGenes and 1,104 miRNAs were identified, and 99 differentially expressed miRNAs negatively regulated 1,474 differentially expressed target genes. Among them, eight miRNAs were unique to A. mongolicum, and there were 36 target genes. A weighted gene co-expression network analysis identified five hub genes. The miRNAs of five hub genes were screened with an integration analysis of the degradome and sRNAs, such as osa-miR444a-3p.2-MADS47, bdi-miR408-5p_1ss19TA-CCX1, tae-miR9774_L-2R-1_1ss11GT-carC, ata-miR169a-3p-PAO2, and bdi-miR528-p3_2ss15TG20CA-HOX24. The functional annotations revealed that they were involved in mediating the brassinosteroid signal pathway, transporting and exchanging sodium and potassium ions and regulating the oxidation-reduction process, hydrolase activity, plant response to water deprivation, abscisic acid (ABA) and the ABA-activated signaling pathway to regulate drought stress. Five hub genes were discovered, which could play central roles in the regulation of drought-responsive genes. These results show that the combined analysis of miRNA, the transcriptome and degradation group provides a useful platform to investigate the molecular mechanism of drought resistance in A. mongolicum and could provide new insights into the genetic engineering of Poaceae crops in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA