Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 100(26): 15516-21, 2003 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-14668446

RESUMEN

Protein conformational transitions form the molecular basis of many cellular processes, such as signal transduction and membrane traffic. However, in many cases, little is known about their structural dynamics. Here we have used dynamic single-molecule fluorescence to study at high time resolution, conformational transitions of syntaxin 1, a soluble N-ethylmaleimide-sensitive factor attachment protein receptors protein essential for exocytotic membrane fusion. Sets of syntaxin double mutants were randomly labeled with a mix of donor and acceptor dye and their fluorescence resonance energy transfer was measured. For each set, all fluorescence information was recorded simultaneously with high time resolution, providing detailed information on distances and dynamics that were used to create structural models. We found that free syntaxin switches between an inactive closed and an active open configuration with a relaxation time of 0.8 ms, explaining why regulatory proteins are needed to arrest the protein in one conformational state.


Asunto(s)
Antígenos de Superficie/química , Proteínas del Tejido Nervioso/química , Sustitución de Aminoácidos , Antígenos de Superficie/metabolismo , Cisteína , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina , Sintaxina 1
2.
J Biol Chem ; 276(16): 13169-77, 2001 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-11278719

RESUMEN

SNARE (soluble NSF acceptor protein receptor) proteins are thought to mediate membrane fusion by assembling into heterooligomeric complexes that connect the fusing membranes and initiate the fusion reaction. Here we used site-directed spin labeling to map conformational changes that occur upon homo- and heterooligomeric complex formation of neuronal SNARE proteins. We found that the soluble domains of synaptobrevin, SNAP-25, and syntaxin 1 are unstructured. At higher concentrations, the SNARE motif of syntaxin 1 forms homooligomeric helical bundles with at least some of the alpha-helices aligned in parallel. In the assembled SNARE complex, mapping of thirty side chain positions yielded spectra which are in good agreement with the recently published crystal structure. The loop region of SNAP-25 that connects the two SNARE motifs is largely unstructured. C-terminal truncation of synaptobrevin resulted in complexes that are completely folded N-terminal of the truncation but become unstructured at the C-terminal end. The binary complex of syntaxin and SNAP-25 consists of a parallel four helix-bundle with properties resembling that of the ternary complex.


Asunto(s)
Antígenos de Superficie/química , Proteínas de la Membrana/química , Proteínas del Tejido Nervioso/química , Proteínas de Transporte Vesicular , Sustitución de Aminoácidos , Antígenos de Superficie/metabolismo , Sitios de Unión , Cisteína , Espectroscopía de Resonancia por Spin del Electrón , Sustancias Macromoleculares , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/química , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas R-SNARE , Proteínas SNARE , Eliminación de Secuencia , Marcadores de Spin , Proteína 25 Asociada a Sinaptosomas , Sintaxina 1
3.
EMBO J ; 19(23): 6453-64, 2000 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-11101518

RESUMEN

Sets of SNARE proteins mediate membrane fusion by assembling into core complexes. Multiple SNAREs are thought to function in different intracellular trafficking steps but it is often unclear which of the SNAREs cooperate in individual fusion reactions. We report that syntaxin 7, syntaxin 8, vti1b and endobrevin/VAMP-8 form a complex that functions in the fusion of late endosomes. Antibodies specific for each protein coprecipitate the complex, inhibit homotypic fusion of late endosomes in vitro and retard delivery of endocytosed epidermal growth factor to lysosomes. The purified proteins form core complexes with biochemical and biophysical properties remarkably similar to the neuronal core complex, although each of the four proteins carries a transmembrane domain and three have independently folded N-terminal domains. Substitution experiments, sequence and structural comparisons revealed that each protein occupies a unique position in the complex, with syntaxin 7 corresponding to syntaxin 1, and vti1b and syntaxin 8 corresponding to the N- and C-terminal domains of SNAP-25, respectively. We conclude that the structure of core complexes and their molecular mechanism in membrane fusion is highly conserved between distant SNAREs.


Asunto(s)
Endosomas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Animales , Antígenos de Superficie/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Clonación Molecular , Secuencia Conservada , Electroforesis en Gel de Poliacrilamida , Factor de Crecimiento Epidérmico/metabolismo , Técnica del Anticuerpo Fluorescente , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Pruebas de Precipitina , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Qa-SNARE , Proteínas Qb-SNARE , Proteínas R-SNARE , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Proteína 25 Asociada a Sinaptosomas , Sintaxina 1 , Temperatura , Transfección
4.
J Biol Chem ; 275(26): 19808-18, 2000 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-10777504

RESUMEN

Complexins are evolutionarily conserved proteins that specifically bind to soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes and thus may regulate SNARE function. Using purified proteins, we have performed a detailed analysis of the structure of complexin and of its interaction with SNARE proteins. NMR spectroscopy revealed that isolated complexins have no tertiary structure but contain an unusual alpha-helical middle domain of approximately 58 amino acids that overlaps with the most highly conserved region of the molecules. Complexins form a stable stoichiometric complex with the central domain of the ternary SNARE complex, whereas no binding was observed to monomeric SNAREs. Using a combination of limited proteolysis, deletion mutagenesis, and NMR spectroscopy, we found that the helical middle region of complexin is responsible for binding to the SNARE complex. Binding was highly sensitive to substitution of syntaxin 1 or synaptobrevin 2 with other SNARE homologs but less sensitive to substitution of SNAP-25. In addition, a stretch of 12 amino acids in the middle of the SNARE motif of syntaxin 1A was able to confer binding activity to the non-binding relative syntaxin 4. Furthermore, disassembly of ternary complexes is not affected by complexins. We conclude that complexins are specific ligands of the neuronal core complex that bind with a central alpha-helical domain, probably to the middle of the surface groove formed by synaptobrevin and syntaxin. Complexins may regulate the function of ternary complexes and control membrane fusion through this interaction.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/química , Proteínas de Transporte Vesicular , Proteínas Adaptadoras del Transporte Vesicular , Secuencia de Aminoácidos , Animales , Antígenos de Superficie/metabolismo , Sitios de Unión , Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Mutagénesis , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Plásmidos , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteolípidos/metabolismo , Proteínas R-SNARE , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE , Homología de Secuencia de Aminoácido , Sintaxina 1
5.
Neuron ; 24(2): 363-76, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10571230

RESUMEN

The synaptic vesicle protein synaptotagmin I binds Ca2+ and is required for efficient neurotransmitter release. Here, we measure the response time of the C2 domains of synaptotagmin to determine whether synaptotagmin is fast enough to function as a Ca2+ sensor for rapid exocytosis. We report that synaptotagmin is "tuned" to sense Ca2+ concentrations that trigger neuronal exocytosis. The speed of response is unique to synaptotagmin I and readily satisfies the kinetic constraints of synaptic vesicle membrane fusion. We further demonstrate that Ca2+ triggers penetration of synaptotagmin into membranes and simultaneously drives assembly of synaptotagmin onto the base of the ternary SNARE (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment receptor) complex, near the transmembrane anchor of syntaxin. These data support a molecular model in which synaptotagmin triggers exocytosis through its interactions with membranes and the SNARE complex.


Asunto(s)
Proteínas de Unión al Calcio , Calcio/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular , Animales , Cinética , Fusión de Membrana/fisiología , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Membranas/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Ratas , Secuencias Repetitivas de Ácidos Nucleicos , Proteínas SNARE , Homología de Secuencia , Sinaptotagmina I , Sinaptotagminas
6.
J Biol Chem ; 274(22): 15440-6, 1999 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-10336434

RESUMEN

Assembly of soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) proteins between two opposing membranes is thought to be the key event that initiates membrane fusion. Many new SNARE proteins have recently been localized to distinct intracellular compartments, supporting the view that sets of specific SNAREs are specialized for distinct trafficking steps. We have now investigated whether other SNAREs can form complexes with components of the synaptic SNARE complex including synaptobrevin/VAMP 2, SNAP-25, and syntaxin 1. When the Q-SNAREs syntaxin 2, 3, and 4, and the R-SNARE endobrevin/VAMP 8 were used in various combinations, heat-resistant complexes were formed. Limited proteolysis revealed that these complexes contained a protease-resistant core similar to that of the synaptic complex. All complexes were disassembled by the ATPase N-ethylmaleimide-sensitive fusion protein and its cofactor alpha-SNAP. Circular dichroism spectroscopy showed that major conformational changes occur during assembly, which are associated with induction of structure from unstructured monomers. Furthermore, no preference for synaptobrevin was observed during the assembly of the synaptic complex when endobrevin/VAMP 8 was present in equal concentrations. We conclude that cognate and non-cognate SNARE complexes are very similar with respect to biophysical properties, assembly, and disassembly, suggesting that specificity of membrane fusion in intracellular membrane traffic is not due to intrinsic specificity of SNARE pairing.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Clonación Molecular , Detergentes , Endopeptidasa K/metabolismo , Fusión de Membrana , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Estructura Secundaria de Proteína , Proteínas Qa-SNARE , Proteínas R-SNARE , Ratas , Proteínas Recombinantes/metabolismo , Proteínas SNARE , Alineación de Secuencia , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Proteína 25 Asociada a Sinaptosomas , Sintaxina 1
7.
Proc Natl Acad Sci U S A ; 95(26): 15781-6, 1998 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-9861047

RESUMEN

SNARE [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein receptor] proteins are essential for membrane fusion and are conserved from yeast to humans. Sequence alignments of the most conserved regions were mapped onto the recently solved crystal structure of the heterotrimeric synaptic fusion complex. The association of the four alpha-helices in the synaptic fusion complex structure produces highly conserved layers of interacting amino acid side chains in the center of the four-helix bundle. Mutations in these layers reduce complex stability and cause defects in membrane traffic even in distantly related SNAREs. When syntaxin-4 is modeled into the synaptic fusion complex as a replacement of syntaxin-1A, no major steric clashes arise and the most variable amino acids localize to the outer surface of the complex. We conclude that the main structural features of the neuronal complex are highly conserved during evolution. On the basis of these features we have reclassified SNARE proteins into Q-SNAREs and R-SNAREs, and we propose that fusion-competent SNARE complexes generally consist of four-helix bundles composed of three Q-SNAREs and one R-SNARE.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/clasificación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/clasificación , Estructura Secundaria de Proteína , Sinapsis/fisiología , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Humanos , Sustancias Macromoleculares , Fusión de Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas SNARE , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sintaxina 1
8.
Nature ; 395(6700): 347-53, 1998 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-9759724

RESUMEN

The evolutionarily conserved SNARE proteins and their complexes are involved in the fusion of vesicles with their target membranes; however, the overall organization and structural details of these complexes are unknown. Here we report the X-ray crystal structure at 2.4 A resolution of a core synaptic fusion complex containing syntaxin-1 A, synaptobrevin-II and SNAP-25B. The structure reveals a highly twisted and parallel four-helix bundle that differs from the bundles described for the haemagglutinin and HIV/SIV gp41 membrane-fusion proteins. Conserved leucine-zipper-like layers are found at the centre of the synaptic fusion complex. Embedded within these leucine-zipper layers is an ionic layer consisting of an arginine and three glutamine residues contributed from each of the four alpha-helices. These residues are highly conserved across the entire SNARE family. The regions flanking the leucine-zipper-like layers contain a hydrophobic core similar to that of more general four-helix-bundle proteins. The surface of the synaptic fusion complex is highly grooved and possesses distinct hydrophilic, hydrophobic and charged regions. These characteristics may be important for membrane fusion and for the binding of regulatory factors affecting neurotransmission.


Asunto(s)
Antígenos de Superficie/química , Exocitosis , Proteínas de la Membrana/química , Proteínas del Tejido Nervioso/química , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular , Antígenos de Superficie/metabolismo , Cristalografía por Rayos X , Escherichia coli , Sustancias Macromoleculares , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Neurotoxinas/metabolismo , Unión Proteica , Conformación Proteica , Proteínas R-SNARE , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas SNARE , Vesículas Sinápticas/química , Proteína 25 Asociada a Sinaptosomas , Sintaxina 1
9.
Biochemistry ; 37(29): 10354-62, 1998 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-9671503

RESUMEN

Assembly of the three neuronal membrane proteins synaptobrevin, syntaxin, and SNAP-25 is thought to be one of the key steps in mediating exocytosis of synaptic vesicles. In vivo and in vitro, these proteins form a tight complex. Assembly is associated with a large increase in alpha-helical content, suggesting that major structural and conformational changes are associated with the assembly reaction. Limited proteolysis by trypsin, chymotrypsin, and proteinase K of the ternary complex formed from recombinant proteins lacking their membrane anchors revealed a SDS-resistant minimal core. The components of this core complex were purified and characterized by N-terminal sequencing and mass spectrometry. They include a slightly shortened synaptobrevin fragment, C- and N-terminal fragments of SNAP-25, and a C-terminal fragment of syntaxin that is slightly larger than the previously characterized H3 domain. Recombinant proteins corresponding to these fragments are sufficient for assembly and disassembly. In addition, each of the two SNAP-25 fragments can individually form complexes with syntaxin and synaptobrevin, suggesting that they both contribute to the assembly of the SNARE complex. Upon complex assembly, a large increase in alpha-helical content is observed along with a significantly increased melting temperature (Tm). Like the full-length complex, the minimal complex tends to form an oligomeric species; global analysis of equilibrium ultracentrifugation data suggests a monomer-trimer equilibrium exists. These conserved biophysical properties may thus be of fundamental importance in the mechanism of membrane fusion.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Vesículas Sinápticas/química , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Endopeptidasas/farmacología , Hidrólisis , Sustancias Macromoleculares , Datos de Secuencia Molecular , Proteínas Qa-SNARE , Proteínas R-SNARE , Ratas , Proteínas SNARE , Relación Estructura-Actividad , Vesículas Sinápticas/metabolismo , Proteína 25 Asociada a Sinaptosomas
10.
J Biol Chem ; 272(44): 28036-41, 1997 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-9346956

RESUMEN

SNAP-25, syntaxin, and synaptobrevin play a key role in the regulated exocytosis of synaptic vesicles, but their mechanism of action is not understood. In vitro, the proteins spontaneously assemble into a ternary complex that can be dissociated by the ATPase N-ethylmaleimide-sensitive fusion protein and the cofactors alpha-, beta-, and gamma-SNAP. Since the structural changes associated with these reactions probably form the basis of membrane fusion, we have embarked on biophysical studies aimed at elucidating such changes in vitro using recombinant proteins. All proteins were purified in a monomeric form. Syntaxin showed significant alpha-helicity, whereas SNAP-25 and synaptobrevin exhibited characteristics of largely unstructured proteins. Formation of the ternary complex induced dramatic increases in alpha-helicity and in thermal stability. This suggests that structure is induced in SNAP-25 and synaptobrevin upon complex formation. In addition, the stoichiometry changed from 2:1 in the syntaxin-SNAP-25 complex to 1:1:1 in the ternary complex. We propose that the transition from largely unstructured monomers to a tightly packed, energetically favored ternary complex connecting two membranes is a key step in overcoming energy barriers for membrane fusion.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular , Proteínas Portadoras/química , Cromatografía en Gel , Dicroismo Circular , Luz , Proteínas de la Membrana/química , Peso Molecular , Conformación Proteica , Proteínas Qc-SNARE , Dispersión de Radiación
11.
J Biol Chem ; 272(7): 4582-90, 1997 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-9020186

RESUMEN

The highly conserved proteins syntaxin and SNAP-25 are part of a protein complex that is thought to play a key role in exocytosis of synaptic vesicles. Previous work demonstrated that syntaxin and SNAP-25 bind to each other with high affinity and that their binding regions are predicted to form coiled coils. Circular dichroism spectroscopy was used here to study the alpha-helicity of the individual proteins and to gain insight into structural changes associated with complex formation. Syntaxin displayed approximately 43% alpha-helical content. In contrast, the alpha-helical content of SNAP-25 was low under physiological conditions. Formation of the SNAP-25-syntaxin complex was associated with a dramatic increase in alpha-helicity. Interaction of a 90-residue NH2-terminal fragment of SNAP-25 comprising the minimal syntaxin binding domain lead to a similar but less pronounced increase in alpha-helicity. Single amino acid replacements in the putative hydrophobic core of this fragment with hydrophilic amino acids abolished the induced structural change and disrupted the interaction monitored by binding assays. Replacements with hydrophobic residues had no effect. Our findings are consistent with induced coiled coil formation upon binding of syntaxin and SNAP-25.


Asunto(s)
Proteínas de la Membrana/química , Proteínas del Tejido Nervioso/metabolismo , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Concentración de Iones de Hidrógeno , Sanguijuelas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Concentración Osmolar , Unión Proteica , Conformación Proteica , Proteínas Qa-SNARE , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Proteína 25 Asociada a Sinaptosomas
13.
J Cell Biol ; 125(4): 721-32, 1994 May.
Artículo en Inglés | MEDLINE | ID: mdl-8188742

RESUMEN

Constitutive secretory vesicles carrying heparan sulfate proteoglycan (HSPG) were identified in isolated rat hepatocytes by pulse-chase experiments with [35S]sulfate and purified by velocity-controlled sucrose gradient centrifugation followed by equilibrium density centrifugation in Nycodenz. Using this procedure, the vesicles were separated from plasma membranes, Golgi, trans-Golgi network (TGN), ER, endosomes, lysosomes, transcytotic vesicles, and mitochondria. The diameter of these vesicles was approximately 100-200 nm as determined by electron microscopy. A typical coat structure as described for intra-Golgi transport vesicles or clathrin-coated vesicles could not be seen, and the vesicles were not associated with the coat protein beta-COP. Furthermore, the vesicles appear to represent a low density compartment (1.05-1.06 g/ml). Other constitutively secreted proteins (rat serum albumin, apolipoprotein E, and fibrinogen) could not be detected in purified HSPG-carrying vesicles, but banded in the denser fractions of the Nycodenz gradient. Moreover, during pulse-chase labeling with [35S]methionine, labeled albumin did not appear in the post-TGN vesicle fraction carrying HSPGs. These findings indicate sorting of HSPGs and albumin into different types of constitutive secretory vesicles in hepatocytes. Two proteins were found to be tightly associated with the membranes of the HSPG carrying vesicles: a member of the ADP ribosylation factor family of small guanine nucleotide-binding proteins and an unknown 14-kD peripheral membrane protein (VAPP14). Concerning the secretory pathway, we conclude from these results that ADP ribosylation factor proteins are not only involved in vesicular transport from the ER via the Golgi to the TGN, but also in vesicular transport from the TGN to the plasma membrane.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al GTP/metabolismo , Aparato de Golgi/metabolismo , Heparitina Sulfato/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Orgánulos/metabolismo , Proteoglicanos/metabolismo , Factores de Ribosilacion-ADP , Albúminas/metabolismo , Animales , Apolipoproteínas E/metabolismo , Células Cultivadas , Centrifugación por Gradiente de Densidad , Fibrinógeno/metabolismo , Proteoglicanos de Heparán Sulfato , Hígado/citología , Microscopía Electrónica , Procesamiento Proteico-Postraduccional , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...