Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Allergy ; 72(1): 66-76, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27061189

RESUMEN

BACKGROUND: IgE-expressing (IgE+ ) plasma cells (PCs) provide a continuous source of allergen-specific IgE that is central to allergic responses. The extreme sparsity of IgE+ cells in vivo has confined their study almost entirely to mouse models. OBJECTIVE: To characterize the development pathway of human IgE+ PCs and to determine the ontogeny of human IgE+ PCs. METHODS: To generate human IgE+ cells, we cultured tonsil B cells with IL-4 and anti-CD40. Using FACS and RT-PCR, we examined the phenotype of generated IgE+ cells, the capacity of tonsil B-cell subsets to generate IgE+ PCs and the class switching pathways involved. RESULTS: We have identified three phenotypic stages of IgE+ PC development pathway, namely (i) IgE+ germinal centre (GC)-like B cells, (ii) IgE+ PC-like 'plasmablasts' and (iii) IgE+ PCs. The same phenotypic stages were also observed for IgG1+ cells. Total tonsil B cells give rise to IgE+ PCs by direct and sequential switching, whereas the isolated GC B-cell fraction, the main source of IgE+ PCs, generates IgE+ PCs by sequential switching. PC differentiation of IgE+ cells is accompanied by the down-regulation of surface expression of the short form of membrane IgE (mIgES ), which is homologous to mouse mIgE, and the up-regulation of the long form of mIgE (mIgEL ), which is associated with an enhanced B-cell survival and expressed in humans, but not in mice. CONCLUSION: Generation of IgE+ PCs from tonsil GC B cells occurs mainly via sequential switching from IgG. The mIgEL /mIgES ratio may be implicated in survival of IgE+ B cells during PC differentiation and allergic disease.


Asunto(s)
Linfocitos B/metabolismo , Expresión Génica , Inmunoglobulina E/genética , Células Plasmáticas/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Células Cultivadas , Centro Germinal/inmunología , Centro Germinal/metabolismo , Humanos , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Inmunofenotipificación , Fenotipo , Células Plasmáticas/citología , Células Plasmáticas/inmunología
2.
Clin Exp Immunol ; 183(1): 65-75, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26352785

RESUMEN

Diversification of the antibody repertoire is essential for the normal operation of the vertebrate adaptive immune system. Following antigen encounter, B cells are activated, proliferate rapidly and undergo two diversification events; somatic hypermutation (followed by selection), which enhances the affinity of the antibody for its cognate antigen, and class-switch recombination, which alters the effector functions of the antibody to adapt the response to the challenge faced. B cells must then differentiate into antibody-secreting plasma cells or long-lived memory B cells. These activities take place in specialized immunological environments called germinal centres, usually located in the secondary lymphoid organs. To complete the germinal centre activities successfully, a B cell adopts a transcriptional programme that allows it to migrate to specific sites within the germinal centre, proliferate, modify its DNA recombination and repair pathways, alter its apoptotic potential and finally undergo terminal differentiation. To co-ordinate these processes, B cells employ a number of 'master regulator' transcription factors which mediate wholesale transcriptomic changes. These master transcription factors are mutually antagonistic and form a complex regulatory network to maintain distinct gene expression programs. Within this network, multiple points of positive and negative feedback ensure the expression of the 'master regulators', augmented by a number of 'secondary' factors that reinforce these networks and sense the progress of the immune response. In this review we will discuss the different activities B cells must undertake to mount a successful T cell-dependent immune response and describe how a regulatory network of transcription factors controls these processes.


Asunto(s)
Linfocitos B/inmunología , Selección Clonal Mediada por Antígenos/inmunología , Centro Germinal/inmunología , Linfocitos T/inmunología , Factores de Transcripción/metabolismo , Inmunidad Adaptativa , Animales , Humanos , Inmunomodulación , Transcriptoma
3.
Allergy ; 70(10): 1269-77, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26109279

RESUMEN

BACKGROUND: Research on the origins and development of human IgE-expressing (IgE(+) ) cells is required for understanding the pathogenesis of allergy and asthma. These studies have been thwarted by the rarity of IgE(+) cells in vivo and the low frequency of class switch recombination (CSR) to IgE ex vivo. To determine the main source of IgE(+) cells, we investigated the relation between the phenotypic composition of tonsil B cells and the CSR to IgE ex vivo. METHODS: Human tonsil B cells were analyzed by flow cytometry (FACS) and cultured with IL-4 and anti-CD40 to induce CSR to IgE. Naïve, germinal center (GC), early GC (eGC), and memory tonsil B cells were isolated by FACS, and their capacities for IL-4 and anti-CD40 signaling, cell proliferation, and de novo class switching to IgE were analyzed by RT-PCR and FACS. RESULTS: B cells from different tonsils exhibited varying capacities for CSR to IgE ex vivo. This was correlated with the percentage of eGC B cells in the tonsil at the outset of the culture. Despite relatively poor cell viability, eGC and GC B-cell cultures produced the highest yields of IgE(+) cells compared to naïve and memory B-cell cultures. The main factors accounting for this result were the strength of IL-4R and CD40 signaling and relative rates of cell proliferation. CONCLUSIONS: This study shows that the maturation state of tonsil B cells determines their capacity to undergo class switching to IgE ex vivo, with the GC-derived B cells yielding the highest percentage of IgE(+) cells.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Centro Germinal/citología , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Inmunoglobulina E/genética , Inmunoglobulina E/inmunología , Antígenos CD40/antagonistas & inhibidores , Antígenos CD40/metabolismo , Supervivencia Celular/inmunología , Células Cultivadas , Humanos , Memoria Inmunológica , Interleucina-4/metabolismo , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Tonsila Palatina/citología , Transducción de Señal
4.
Allergy ; 68(1): 55-63, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23157682

RESUMEN

BACKGROUND: Chronic rhinosinusitis with nasal polyps (NP) and allergic rhinitis (AR) is characterized by local Th2 inflammation and up-regulation of IgE; however, IgE in NP is 'polyclonal' and allergen specific, whereas IgE in AR is 'oligoclonal' and allergen specific. Germinal center (GC) reactions occur in AR, while only the formation of GC-like structures in NP is described. The aim of this study was to investigate the involvement of local IgE production, class switch recombination, and receptor revision in NP. METHODS: We compared the levels of local IgE, germline gene transcripts, and mature Ig mRNA expression, recombination activating gene (RAG1 and RAG2), key markers of Th2 inflammation, and GC reactions in NP tissue vs AR and control tissue. Nasal mucosa was immunostained for the co-expression of RAG1 and RAG2 in B cells, plasma cells, and T cells, using dual or triple immunofluorescence (IF). RESULTS: In NP, local IgE level and key markers of local class switching are increased compared with AR and normal controls (NC). In NP, switch circle transcripts reveal ongoing local class switch recombination to IgE. Up to 30% of B cells, plasma cells, and T cells in nasal polyps re-express both RAG1 and RAG2, required for receptor revision. RAG1 and RAG2 mRNA concentrations are increased in NP and correlated with the magnitude of inflammation and the presence of S. aureus enterotoxin (superantigen)-specific IgE in the nasal polyp mucosa. CONCLUSION: Our results provide the first evidence of local receptor revision and class switching to IgE, and B-cell differentiation into IgE-secreting plasma cells in NP.


Asunto(s)
Cambio de Clase de Inmunoglobulina , Inmunoglobulina E/genética , Inmunoglobulina E/inmunología , Pólipos Nasales/etiología , Rinitis/etiología , Sinusitis/etiología , Adolescente , Adulto , Anciano , Biomarcadores , Proteínas de Unión al ADN/metabolismo , Enterotoxinas/inmunología , Femenino , Centro Germinal/inmunología , Centro Germinal/patología , Proteínas de Homeodominio/metabolismo , Humanos , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Inflamación/inmunología , Inflamación/patología , Masculino , Persona de Mediana Edad , Pólipos Nasales/patología , Hipermutación Somática de Inmunoglobulina , Staphylococcus aureus/inmunología , Adulto Joven
5.
EMBO J ; 14(4): 757-66, 1995 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-7882979

RESUMEN

The transcription factor GATA-2 is present in blood cell precursors and plays a pivotal role in the control of erythroid differentiation. In Xenopus embryos, low levels of GATA-2 mRNA are maternally derived, while the onset of zygotic GATA-2 expression coincides with commitment to haematopoietic lineages. However, its initial transcriptional activation is not restricted to the presumptive blood islands, but occurs throughout ventral and lateral regions, in all three germ layers. In order to determine how this expression pattern is controlled, we have isolated and characterized the Xenopus GATA-2 gene. We show that 1.65 kb of 5' flanking sequences are sufficient to direct both correct transcriptional initiation in oocytes and appropriate temporal and spatial gene expression in early embryos. The transgene is activated during gastrulation and by neurula stages in predominantly expressed in the ventral hemisphere. We demonstrate that a CCAAT element is necessary for gene activity in both systems and that extracts prepared from oocytes and embryos contain a factor which specifically recognizes this element. We also show that cytoplasmic localization inhibits the function of this CCAAT factor until the beginning of gastrulation, when the zygotic GATA-2 gene is activated. These observations extend our understanding of the mechanisms by which maternal factors control the temporal activation of transcription in early vertebrate embryos.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Gástrula/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Xenopus laevis/embriología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Potenciadoras de Unión a CCAAT , Núcleo Celular/metabolismo , Clonación Molecular , Factor de Transcripción GATA2 , Regulación del Desarrollo de la Expresión Génica , Genes , Datos de Secuencia Molecular , Oocitos/fisiología , Regiones Promotoras Genéticas , ARN Mensajero/genética , Transcripción Genética , Proteínas de Xenopus , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...