Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biophys Chem ; 307: 107176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219420

RESUMEN

One of the critical stages of the T-cell immune response is the dimerization of the intramembrane domains of T-cell receptors (TCR). Structural similarities between the immunosuppressive domains of viral proteins and the transmembrane domains of TCR have led several authors to hypothesize the mechanism of immune response suppression by highly pathogenic viruses: viral proteins embed themselves in the membrane and act on the intramembrane domain of the TCRalpha subunit, hindering its functional oligomerization. It has also been suggested that this mechanism is used by influenza A virus in NS1-mediated immunosuppression. We have shown that the peptide corresponding to the primary structure of the potential immunosuppressive domain of NS1 protein (G51) can reduce concanavalin A-induced proliferation of PBMC cells, as well as in vitro, G51 can affect the oligomerization of the core peptide corresponding to the intramembrane domain of TCR, using AFM and small-angle neutron scattering. The results obtained using in cellulo and in vitro model systems suggest the presence of functional interaction between the NS1 fragment and the intramembrane domain of the TCR alpha subunit. We have proposed a possible scheme for such interaction obtained by computer modeling. This suggests the existence of another NS1-mediated mechanism of immunosuppression in influenza.


Asunto(s)
Gripe Humana , Humanos , Leucocitos Mononucleares/metabolismo , Péptidos/farmacología , Inmunidad , Proteínas Virales , Receptores de Antígenos de Linfocitos T , Proteínas no Estructurales Virales/química
2.
Biology (Basel) ; 12(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37372076

RESUMEN

Hepatitis C virus (HCV) is one of the basic culprits behind chronic liver disease, which may result in cirrhosis and hepatocarcinoma. In spite of the extensive research conducted, a vaccine against HCV has not been yet created. We have obtained human mesenchymal stem cells (hMSCs) and used them for expressing the HCV NS5A protein as a model vaccination platform. Sixteen hMSC lines of a different origin were transfected with the pcNS5A-GFP plasmid to obtain genetically modified MSCs (mMSCs). The highest efficiency was obtained by the transfection of dental pulp MSCs. C57BL/6 mice were immunized intravenously with mMSCs, and the immune response was compared with the response to the pcNS5A-GFP plasmid, which was injected intramuscularly. It was shown that the antigen-specific lymphocyte proliferation and the number of IFN-γ-synthesizing cells were two to three times higher after the mMSC immunization compared to the DNA immunization. In addition, mMSCs induced more CD4+ memory T cells and an increase in the CD4+/CD8+ ratio. The results suggest that the immunostimulatory effect of mMSCs is associated with the switch of MSCs to the pro-inflammatory phenotype and a decrease in the proportion of myeloid derived suppressor cells. Thus, the possibility of using human mMSCs for the creation of a vaccine against HCV has been shown for the first time.

3.
Biometals ; 35(6): 1157-1168, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962914

RESUMEN

The work is devoted to the study of the structural characteristics of the myeloperoxidase-ceruloplasmin-thrombin complex using small-angle neutron scattering methods in combination with computer modeling, as well as surface plasmon resonance and solid-phase enzyme assay. We have previously shown that the functioning of active myeloperoxidase during inflammation, despite the presence in the blood of an excess of ceruloplasmin which inhibits its activity, is possible due to the partial proteolysis of ceruloplasmin by thrombin. In this study, the myeloperoxidase-ceruloplasmin-thrombin heterohexamer was obtained in vitro. The building of a heterohexamer full-atomic model in silico, considering the glycosylation of the constituent proteins, confirmed the absence of steric barriers for the formation of protein-protein contacts. It was shown that the partial proteolysis of ceruloplasmin does not affect its ability to bind to myeloperoxidase, and a structural model of the heterohexamer was obtained using the small-angle neutron scattering method.


Asunto(s)
Ceruloplasmina , Peroxidasa , Trombina , Colorantes , Pruebas de Enzimas
4.
Sci Adv ; 8(31): eabn4880, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35921413

RESUMEN

The polarization response of antiferroelectrics to electric fields is such that the materials can store large energy densities, which makes them promising candidates for energy storage applications in pulsed-power technologies. However, relatively few materials of this kind are known. Here, we consider ferroelectric/paraelectric superlattices as artificial electrostatically engineered antiferroelectrics. Specifically, using high-throughput second-principles calculations, we engineer PbTiO3/SrTiO3 superlattices to optimize their energy storage performance at room temperature (to maximize density and release efficiency) with respect to different design variables (layer thicknesses, epitaxial conditions, and stiffness of the dielectric layer). We obtain results competitive with the state-of-the-art antiferroelectric capacitors and reveal the mechanisms responsible for the optimal properties.

5.
Nat Commun ; 13(1): 1110, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236832

RESUMEN

Reducing the switching energy of ferroelectric thin films remains an important goal in the pursuit of ultralow-power ferroelectric memory and logic devices. Here, we elucidate the fundamental role of lattice dynamics in ferroelectric switching by studying both freestanding bismuth ferrite (BiFeO3) membranes and films clamped to a substrate. We observe a distinct evolution of the ferroelectric domain pattern, from striped, 71° ferroelastic domains (spacing of ~100 nm) in clamped BiFeO3 films, to large (10's of micrometers) 180° domains in freestanding films. By removing the constraints imposed by mechanical clamping from the substrate, we can realize a ~40% reduction of the switching voltage and a consequent ~60% improvement in the switching speed. Our findings highlight the importance of a dynamic clamping process occurring during switching, which impacts strain, ferroelectric, and ferrodistortive order parameters and plays a critical role in setting the energetics and dynamics of ferroelectric switching.

6.
Biochimie ; 189: 169-180, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34197866

RESUMEN

Despite the development of efficient anti-human immunodeficiency virus-1 (HIV-1) therapy, HIV-1 associated pathogens remain a major clinical problem. Human cytomegalovirus (CMV) is among the most common HIV-1 copathogens and one of the main causes of persistent immune activation associated with dysregulation of the immune system, cerebrovascular and cardiovascular pathologies, and premature aging. Here, we report on the development of dual-targeted drugs with activity against both HIV-1 and CMV. We synthesized seven compounds that constitute conjugates of molecules that suppress both pathogens. We showed that all seven compounds exhibit low cytotoxicity and efficiently inhibited both viruses in cell lines. Furthermore, we chose a representative compound and demonstrated that it efficiently suppressed replication of HIV-1 and CMV in human lymphoid tissue ex vivo coinfected with both viruses. Further development of such compounds may lead to the development of dual-targeted anti-CMV/HIV-1 drugs.


Asunto(s)
Antivirales , Coinfección/tratamiento farmacológico , Infecciones por Citomegalovirus/tratamiento farmacológico , Citomegalovirus/metabolismo , Infecciones por VIH/tratamiento farmacológico , VIH-1/metabolismo , Animales , Antivirales/síntesis química , Antivirales/química , Antivirales/farmacología , Línea Celular , Coinfección/metabolismo , Infecciones por Citomegalovirus/metabolismo , Infecciones por VIH/metabolismo , Humanos , Porcinos
7.
Org Biomol Chem ; 17(30): 7155-7160, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31169856

RESUMEN

We report an "inversed" Arbuzov reaction of the fullerene derivatives C60Ar5Cl with trialkyl phosphites P(OR)3 producing alkylated fullerene derivatives C60Ar5R (R = Me, Et, iPr, nBu) with almost quantitative yields. This reaction provides a convenient synthetic route for the preparation of a large variety of functionalized fullerene derivatives with tailored properties, e.g. water-soluble compounds demonstrating promising antiviral activities against HCMV, HSV1, HIV and several influenza virus strains.

8.
Langmuir ; 34(15): 4640-4650, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29566327

RESUMEN

Herein, we report a novel one-step solvothermal synthesis of magnetite nanoclusters (MNCs). In this report, we discuss the synthesis, structure, and properties of MNCs and contrast enhancement in T2-weighted MR images using magnetite nanoclusters. The effect of different organic acids, used as surfactants, on the size and shape of MNCs was investigated. The structure and properties of samples were determined by magnetic measurements, TGA, TEM, HRTEM, XRD, FTIR, and MRI. Magnetic measurements show that obtained MNCs have relatively high saturation magnetization values (65.1-81.5 emu/g) and dependence of the coercive force on the average size of MNCs was established. MNCs were transferred into an aqueous medium by Pluronic F-127, and T2-relaxivity values were determined. T2-Weighted MR phantom images clearly demonstrated that such magnetite nanoclusters can be used as contrast agents for MRI.

9.
Cell Cycle ; 15(24): 3378-3389, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-28051642

RESUMEN

Responses to human cytomegalovirus (HCMV) infection are largely individual and cell type specific. We investigated molecular profiles in 2 primary cell cultures of human fibroblasts, which are highly or marginally sensitive to HCMV infection, respectively. We screened expression of genes and microRNAs (miRs) at the early (3 hours) stage of infection. To assess molecular pathway activation profiles, we applied bioinformatic algorithms OncoFinder and MiRImpact. In both cell types, pathway regulation properties at mRNA and miR levels were markedly different. Surprisingly, in the infected highly sensitive cells, we observed a "freeze" of miR expression profiles compared to uninfected controls. Our results evidence that in the sensitive cells, HCMV blocks intracellular regulation of microRNA expression already at the earliest stage of infection. These data suggest somewhat new functions for HCMV products and demonstrate dependence of miR expression arrest on the host-encoded factors.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación de la Expresión Génica , MicroARNs/genética , Adulto , Línea Celular , Fibroblastos/patología , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , MicroARNs/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA