Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37763508

RESUMEN

Cast iron is widely used in engineering production and in the surface alloying of workpieces, which is exploited to improve the properties of the material. Research on cast iron is still valid and needed for the manufacturing processes throughout the product life cycle. In this study, the gray, cast iron GJL 200 laser processing is described based on surface alloying with WC and SiC particulates. SEM analysis and XRD analysis, as well as microhardness testing and tribological behavior studies, were employed. It was revealed that laser alloying with carbide particulates affects structural, mechanical, and operational properties compared to cast iron in its initial state. Most importantly, the right choice of laser processing conditions can increase the wear resistance of the cast iron base. The wear resistance after WC alloying was 4-24 times higher compared to the initial material, while after SiC alloying, it was 2-18 times lower than that of the initial material.

2.
Materials (Basel) ; 15(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35161020

RESUMEN

Cast iron is one of the most common structural materials and is widely used in mechanical engineering production. Taking into account its rather low mechanical properties, different technologies are currently used in industry, among other areas, for the mechanical and thermal strengtheningof the surface layer, as well as surface alloying of workpieces. The aim of this study was a comprehensive analysis of changes in the microstructure, microhardness of the surface layer and its wear resistance under lubrication friction conditions and changed surface energy density in order to ensure the effectiveness of laser strengthening of gray cast iron. In this research, the efficiency of gray cast iron GJL200 laser strengthening was described. The basic properties of the surface layer of gray cast iron under laser strengthening, including the microstructure, microhardness, tribological and wear behavior, were compared with the properties of cast iron in the initial state. It was found that laser strengthening under the right choice of the surface energy density ensured a five-to-tenfold increase in the wear resistance of gray cast iron in comparison with the initial state. This was due to forming unconventional pseudo-vermicular graphite shapes at the friction zone, as well as a spongy-capillary effect appearance. The appropriate selection of surface energy density values provided stable and low coefficients of friction and a very significant increase in the wear resistance compared with the values reached for a cast iron in the initial state. This fact is new and very important for the engineering practice. The values of the surface energy density can be easily controlled, which means that different parts can be operated efficiently after laser strengthening.

3.
Materials (Basel) ; 14(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670500

RESUMEN

In recent years, additive manufacturing technologies have become increasingly widespread with the most intensive development being direct metal deposition (DMD), alloys, and ceramic materials on a metal substrate. This study shows the possibilities of the effective formation of coatings, based on heterogeneous metal alloys (Ni-based alloy and Fe-Al bronze) deposited onto 1045 structural steel. Changes in the microhardness, the microstructure, and the tribological properties of the composite coating, depending on the laser spot speed and pitch during DMD processing, have been considered. It was revealed that if the components of the composite coating are chosen correctly, there are possible DMD conditions ensuring reliable and durable connection between them and with the substrate.

4.
Materials (Basel) ; 14(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33401383

RESUMEN

In recent years, studies of different properties of hybrid metal matrix composites, as well as very detailed issues, have been published. In this article, ready-made iron, graphite, and silicon carbide powders were used to produce the base material and composites. An analysis of some microstructural and mechanical properties, as well as the tribological behavior of metal matrix composites (MMCs), based on FeGr1 sintered material with the single and hybrid addition of a silicon carbide and graphite was undertaken. During the study, the flexural and compressive strength of MMCs were analyzed and changes of the momentary coefficient of friction, the temperature of friction, as well as wear rates of the MMCs tested were monitored. Based on the results, it was revealed that wear rates decreased 12-fold in comparison to the base material when SiC or SiC + Gr were added. Further research into MMCs with ceramic particle additives is proposed.

5.
Materials (Basel) ; 13(13)2020 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-32605127

RESUMEN

In this paper, the features of the strength, fractures, and tribological behavior of metal-matrix composites based on the FeGr1 material are discussed. To improve the material properties, a mixture of SiC, Al2O3 and C nanoparticulates have been added to an iron-based matrix. The simplex lattice design method and hardness, compression, and bending tests were used to determine the mechanical properties. Scanning electron microscopy was applied for fracture features analysis. Different fracture types, mainly trans-crystalline quasi-brittle and brittle fracture or inter-granular fracture and microcracks were registered for the composites tested. Depending on the type and amount of ceramic additives, significant changes in strength, as well as in the fracture features of the metal-matrix composites (MMCs), were observed. Based on tribological tests, changes in the momentary coefficients of friction, temperature of the friction surface, and wear rate of the composites with nanoparticulates were described. An analysis of the worn surface morphology revealed changes in the wear process depending on the MMC composition. It was shown that the use of hybrid mixed additives based on hard ceramic nanoparticulates improved both strength and tribological properties of composites.

6.
Materials (Basel) ; 13(9)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397543

RESUMEN

This study describes the surface topography of the 17-4 PH stainless steel machined under dry, wet and near-dry cutting conditions. Cutting speeds of 150-500 m/min, feeds of 0.05-0.4 mm/rev and 0.5 mm depth of cutting were applied. The research was based on the 'parameter space investigation' method. Surface roughness parameters, contour maps and material participation curves were analysed using the optical Sensofar S Neox 3D profilometer and the effect of feed, cutting speed and their mutual interaction was noticed. Changes in chip shape depending on the processing conditions are shown. Compared to dry machining, a reduction of Sa, Sq and Sz parameters of 38-48% was achieved for near-dry condition. For lower feeds and average cutting speeds valleys and ridges were observed on the surface machined under dry, wet and near-dry conditions. For higher feeds and middle and higher cutting speeds, deep valleys and high ridges were observed on the surface. Depending on the processing conditions, different textures of the machined surface were registered, particularly anisotropic mixed, periodic and periodically determined. In the Sa range of 0.4-0.8 µm for dry and wet conditions the surface isotropy is ~20%, under near-dry conditions it is ~60%.

7.
Materials (Basel) ; 13(5)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138177

RESUMEN

In recent years, general studies on Selective Laser Melting (SLM)/Selective Laser Sintering (SLS)/direct metal deposition (DMD) technologies, as well as studies on detailed issues in this area, have been carried out. However, a research gap is observed in investigations into the features of single tracks in the above-mentioned technologies. On the basis of data published in 2016-2019, an approach was adopted for a preliminary quantitative analysis of the knowledge base and also trends observed in the development of new technologies. This study demonstrates the effectiveness of the data mining technique based on the Bayes algorithm for analyzing trends in processes of additive manufacturing and the practical application of the knowledge received using the Bayes algorithm. After the analyses referred to above were completed, single and double layers of a composite material based on the Ni-based alloy and Fe-Al bronze were analyzed under different processing conditions. The effects of laser spot speeds and pitches on microhardness, microstructure, and interlayers' features were described. So, the innovative approach, namely, the combination of the analysis of the scientific database of the phenomenon under study and the subsequent experimental investigation of its features, is the scientific novelty of the present study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...