Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Phys Eng Express ; 10(1)2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37995364

RESUMEN

The Dynamic Cardiac SPECT (DC-SPECT) system is being developed at the Massachusetts General Hospital, featuring a static cardio focus asymmetrical geometry enabling simultaneous high-resolution and high-sensitivity imaging. Among 14 design iterations of the DC-SPECT with varying number of detector heads, system sensitivity and resolution, the current version under development features 10 mm FWHM geometrical resolution (without resolution recovery) and 0.07% sensitivity at the center of the FOV, this is 1.5× resolution gain and 7× sensitivity gain compared to a conventional dual head gamma camera (0.01% sensitivity and 15-mm resolution). This work presents improvement in imaging resolution by implementing a spatially variant point spread function (SV-PSF) with list mode MLEM reconstruction. A resolution recovery method by PSF deconvolution is validated on list mode MLEM reconstruction for the DC-SPECT. A spatial invariant PSF is included as an additional test to show the influence of the PSF modelling accuracy on reconstructed image quality. We compare the MLEM reconstruction with and without PSF deconvolution; an analytic model is used for the calculation of system response, and the results are compared to the reconstruction with system modelling using Monte Carlo (MC) based methods. Results show that with PSF modelling applied, the quality of the reconstructed image is improved, and the DC-SPECT system can achieve a 4.5 mm central spatial resolution with average 795 counts/Mbq. Both the SV-PSF and the spatial-invariant PSF improve the image quality, and the reconstruction with SV-PSF generates line profiles closer to the ground truth. The results show substantial improvement over the GE Discovery 570c performance (7 mm spatial resolution with an average 460 counts/MBq, 5.8 mm resolution at the FOV center). The impact of PSF deconvolution is significant, improvement of the reconstructed image quality is evident in comparison to MC simulated system matrix with the same sampling size in the simulation.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía de Emisión de Positrones/métodos
2.
ArXiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37461422

RESUMEN

This work highlights the significance of equivariant networks as efficient and high-performance approaches for tomography applications. Our study builds upon the limitations of conventional Convolutional Neural Networks (CNNs), which have shown promise in post-processing various medical imaging systems. However, the efficiency of conventional CNNs heavily relies on an undiminished and proper training set. To tackle this issue, in this study, we introduce an equivariant network, aiming to reduce CNN's dependency on specific training sets. We evaluate the efficacy of equivariant spherical CNNs (SCNNs) for 2- and 3-dimensional medical imaging problems. Our results demonstrate superior quality and computational efficiency of SCNNs in denoising and reconstructing benchmark problems. Furthermore, we propose a novel approach to employ SCNNs as a complement to conventional image reconstruction tools, enhancing the outcomes while reducing reliance on the training set. Across all cases, we observe a significant decrease in computational costs while maintaining the same or higher quality of image processing using SCNNs compared to CNNs. Additionally, we explore the potential of this network for broader tomography applications, particularly those requiring omnidirectional representation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA