Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38558998

RESUMEN

While considerable progress has been made in understanding the neuronal circuits that underlie the patterning of locomotor behaviours such as walking, less is known about the circuits that amplify motoneuron output to enable adaptable increases in muscle force across different locomotor intensities. Here, we demonstrate that an excitatory propriospinal neuron population (V3 neurons, Sim1 + ) forms a large part of the total excitatory interneuron input to motoneurons (∼20%) across all hindlimb muscles. Additionally, V3 neurons make extensive connections among themselves and with other excitatory premotor neurons (such as V2a neurons). These circuits allow local activation of V3 neurons at just one segment (via optogenetics) to rapidly depolarize and amplify locomotor-related motoneuron output at all lumbar segments in both the in vitro spinal cord and the awake adult mouse. Interestingly, despite similar innervation from V3 neurons to flexor and extensor motoneuron pools, functionally, V3 neurons exhibit a pronounced bias towards activating extensor muscles. Furthermore, the V3 neurons appear essential to extensor activity during locomotion because genetically silencing them leads to slower and weaker mice with a poor ability to increase force with locomotor intensity, without much change in the timing of locomotion. Overall, V3 neurons increase the excitability of motoneurons and premotor neurons, thereby serving as global command neurons that amplify the locomotion intensity.

2.
J Neurophysiol ; 130(4): 799-823, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37609680

RESUMEN

When a muscle is stretched, sensory feedback not only causes reflexes but also leads to a depolarization of sensory afferents throughout the spinal cord (primary afferent depolarization, PAD), readying the whole limb for further disturbances. This sensory-evoked PAD is thought to be mediated by a trisynaptic circuit, where sensory input activates first-order excitatory neurons that activate GABAergic neurons that in turn activate GABAA receptors on afferents to cause PAD, though the identity of these first-order neurons is unclear. Here, we show that these first-order neurons include propriospinal V3 neurons, as they receive extensive sensory input and in turn innervate GABAergic neurons that cause PAD, because optogenetic activation or inhibition of V3 neurons in mice mimics or inhibits sensory-evoked PAD, respectively. Furthermore, persistent inward sodium currents intrinsic to V3 neurons prolong their activity, explaining the prolonged duration of PAD. Also, local optogenetic activation of V3 neurons at one segment causes PAD in other segments, due to the long propriospinal tracts of these neurons, helping to explain the radiating nature of PAD. This in turn facilitates monosynaptic reflex transmission to motoneurons across the spinal cord. In addition, V3 neurons directly innervate proprioceptive afferents (including Ia), causing a glutamate receptor-mediated PAD (glutamate PAD). Finally, increasing the spinal cord excitability with either GABAA receptor blockers or chronic spinal cord injury causes an increase in the glutamate PAD. Overall, we show the V3 neuron has a prominent role in modulating sensory transmission, in addition to its previously described role in locomotion.NEW & NOTEWORTHY Locomotor-related propriospinal neurons depolarize sensory axons throughout the spinal cord by either direct glutamatergic axoaxonic contacts or indirect innervation of GABAergic neurons that themselves form axoaxonic contacts on sensory axons. This depolarization (PAD) increases sensory transmission to motoneurons throughout the spinal cord, readying the sensorimotor system for external disturbances. The glutamate-mediated PAD is particularly adaptable, increasing with either an acute block of GABA receptors or chronic spinal cord injury, suggesting a role in motor recovery.


Asunto(s)
Neuronas Motoras , Médula Espinal , Animales , Ratones , Axones , Neuronas GABAérgicas , Ácido Glutámico
3.
J Physiol ; 601(10): 1925-1956, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36928599

RESUMEN

Suppression of the extensor H-reflex by flexor afferent conditioning is thought to be produced by a long-lasting inhibition of extensor Ia afferent terminals via GABAA receptor-activated primary afferent depolarization (PAD). Given the recent finding that PAD does not produce presynaptic inhibition of Ia afferent terminals, we examined in 28 participants if H-reflex suppression is instead mediated by post-activation depression of the extensor Ia afferents triggered by PAD-evoked spikes and/or by a long-lasting inhibition of the extensor motoneurons. A brief conditioning vibration of the flexor tendon suppressed both the extensor soleus H-reflex and the tonic discharge of soleus motor units out to 150 ms following the vibration, suggesting that part of the H-reflex suppression during this period was mediated by postsynaptic inhibition of the extensor motoneurons. When activating the flexor afferents electrically to produce conditioning, the soleus H-reflex was also suppressed but only when a short-latency reflex was evoked in the soleus muscle by the conditioning input itself. In mice, a similar short-latency reflex was evoked when optogenetic or afferent activation of GABAergic (GAD2+ ) neurons produced a large enough PAD to evoke orthodromic spikes in the test Ia afferents, causing post-activation depression of subsequent monosynaptic EPSPs. The long duration of this post-activation depression and related H-reflex suppression (seconds) was similar to rate-dependent depression that is also due to post-activation depression. We conclude that extensor H-reflex inhibition by brief flexor afferent conditioning is produced by both post-activation depression of extensor Ia afferents and long-lasting inhibition of extensor motoneurons, rather than from PAD inhibiting Ia afferent terminals. KEY POINTS: Suppression of extensor H-reflexes by flexor afferent conditioning was thought to be mediated by GABAA receptor-mediated primary afferent depolarization (PAD) shunting action potentials in the Ia afferent terminal. In line with recent findings that PAD has a facilitatory role in Ia afferent conduction, we show here that when large enough, PAD can evoke orthodromic spikes that travel to the Ia afferent terminal to evoke EPSPs in the motoneuron. These PAD-evoked spikes also produce post-activation depression of Ia afferent terminals and may mediate the short- and long-lasting suppression of extensor H-reflexes in response to flexor afferent conditioning. Our findings highlight that we must re-examine how changes in the activation of GABAergic interneurons and PAD following nervous system injury or disease affects the regulation of Ia afferent transmission to spinal neurons and ultimately motor dysfunction in these disorders.


Asunto(s)
Reflejo H , Receptores de GABA-A , Animales , Ratones , Reflejo H/fisiología , Neuronas Aferentes/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético , Estimulación Eléctrica
4.
Nat Neurosci ; 25(10): 1288-1299, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36163283

RESUMEN

Movement and posture depend on sensory feedback that is regulated by specialized GABAergic neurons (GAD2+) that form axo-axonic contacts onto myelinated proprioceptive sensory axons and are thought to be inhibitory. However, we report here that activating GAD2+ neurons directly with optogenetics or indirectly by cutaneous stimulation actually facilitates sensory feedback to motor neurons in rodents and humans. GABAA receptors located at or near nodes of Ranvier of sensory axons cause this facilitation by preventing spike propagation failure at the many axon branch points, which is otherwise common without GABA. In contrast, GABAA receptors are generally lacking from axon terminals and so cannot inhibit transmitter release onto motor neurons, unlike GABAB receptors that cause presynaptic inhibition. GABAergic innervation near nodes and branch points allows individual branches to function autonomously, with GAD2+ neurons regulating which branches conduct, adding a computational layer to the neuronal networks generating movement and likely generalizing to other central nervous system axons.


Asunto(s)
Axones , Médula Espinal , Axones/fisiología , Humanos , Neuronas Motoras , Receptores de GABA-A/fisiología , Receptores de GABA-B , Médula Espinal/fisiología , Ácido gamma-Aminobutírico/fisiología
5.
J Neurophysiol ; 127(4): 1040-1053, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35320053

RESUMEN

Light touch reduces sway during standing. Unexpected displacement of a light touch reference at the finger can produce rapid responses in ankle muscles when standing, suggesting cutaneous receptors in the hand are functionally coupled with ankle muscles. Using microneurography in the median nerve, we tested the hypotheses: 1) that cutaneous afferent activity of mechanoreceptors of the hand would modulate electromyographic (EMG) activity of ankle muscles, and 2) that displacement of a light touch contact across a receptor's sensory territory would be encoded in the afferent activity. Spike-triggered averaging of EMG activity of tibialis anterior (TA) and soleus (SOL) demonstrated that 34 of 42 (81%) cutaneous afferents recorded modulated activity of ankle muscles with latencies between 40 and 119 ms. Cutaneous afferents of all types (slow and fast adapting, types I and II) demonstrated responses in TA and SOL, in both the ipsilateral and contralateral leg. Activity from 11 cutaneous afferents was recorded while a light touch contact was displaced across their receptive fields. Afferent activity increased with stimulus onset and remained elevated for the stimulus duration for all afferents recorded. These results suggest that cutaneous afferents from the hand consistently form connections with motor pools of the leg at latencies implicating spinal pathways. In addition, the same population of afferents is readily excited by the displacement of a light touch contact. Therefore, cutaneous receptors of the hand can be recruited and used to alter motoneuron pool excitability in muscles important to balance control, at latencies relevant for rapid balance responses.NEW & NOTEWORTHY Light touch provides cutaneous feedback argued to contribute to balance control and shown to reduce postural sway. We demonstrate that activity of cutaneous afferents in the median nerve modulates motor pool excitability of ankle muscles at short latencies and that these afferents respond when a light touch contact is displaced. These findings suggest that cutaneous receptors of the hand can contribute to rapid regulation of muscle activity important to standing balance.


Asunto(s)
Tobillo , Mano , Articulación del Tobillo , Electromiografía , Mano/inervación , Músculo Esquelético/fisiología
6.
Behav Brain Res ; 422: 113731, 2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-34979221

RESUMEN

Animal models of cervical spinal cord injury (SCI) have frequently utilized partial transection injuries to evaluate plasticity promoting treatments such as rehabilitation training of skilled reaching and grasping tasks. Though highly useful for studying the effects of cutting specific spinal tracts that are important for skilled forelimb motor function, cervical partial-transection SCI-models underappreciate the extensive spread of most human SCIs, thus offering poor predictability for the clinical setting. Conversely, moderate cervical contusion SCI models targeting the spinal tracts important for skilled reaching and grasping can better replicate the increased size of most human SCIs and are often considered more clinically relevant. However, it is unknown whether animals with moderate cervical contusion SCIs that damage key spinal motor tracts can train in skilled reaching and grasping tasks. In this study, we quantify the impact of injury size and distribution on recovery in a skilled motor task called the single pellet reaching, grasping and retrieval (SPRGR) task in rats with cervical unilateral contusion injuries (UCs), and compare to rats with a partial transection SCIs (i.e., dorsolateral quadrant transection; DLQ). We found that UCs damage key tracts important for performing skilled motor tasks, similar to DLQs, but UCs also produce more extensive grey matter damage and more ventral white matter damage than DLQs. We also compared forelimb functionality at 1, 3, and 5 weeks of rehabilitative motor training between trained and untrained rats and found a more severe drop in SPRGR performance than in DLQ SCIs. Nevertheless, despite more severe injuries and initially low SPRGR performance, rehabilitative training for contusion animals resulted in significant improvements in SPRGR performance and proportionally more recovery than DLQ rats. Our findings show that rehabilitative motor training can facilitate considerable amounts of motor recovery despite extensive spinal cord damage, especially grey matter damage, thus supporting the use of contusion or compression SCI models and showing that ventral grey and white matter damage are not necessarily detrimental to recovery after training.


Asunto(s)
Médula Cervical/lesiones , Terapia por Ejercicio , Miembro Anterior/fisiopatología , Destreza Motora/fisiología , Rehabilitación Neurológica , Condicionamiento Físico Animal/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Animales , Conducta Animal/fisiología , Contusiones/fisiopatología , Contusiones/rehabilitación , Modelos Animales de Enfermedad , Ratas
7.
J Neuroinflammation ; 18(1): 144, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174901

RESUMEN

BACKGROUND: Minocycline is a clinically available synthetic tetracycline derivative with anti-inflammatory and antibiotic properties. The majority of studies show that minocycline can reduce tissue damage and improve functional recovery following central nervous system injuries, mainly attributed to the drug's direct anti-inflammatory, anti-oxidative, and neuroprotective properties. Surprisingly the consequences of minocycline's antibiotic (i.e., antibacterial) effects on the gut microbiota and systemic immune response after spinal cord injury have largely been ignored despite their links to changes in mental health and immune suppression. METHODS: Here, we sought to determine minocycline's effect on spinal cord injury-induced changes in the microbiota-immune axis using a cervical contusion injury in female Lewis rats. We investigated a group that received minocycline following spinal cord injury (immediately after injury for 7 days), an untreated spinal cord injury group, an untreated uninjured group, and an uninjured group that received minocycline. Plasma levels of cytokines/chemokines and fecal microbiota composition (using 16s rRNA sequencing) were monitored for 4 weeks following spinal cord injury as measures of the microbiota-immune axis. Additionally, motor recovery and anxiety-like behavior were assessed throughout the study, and microglial activation was analyzed immediately rostral to, caudal to, and at the lesion epicenter. RESULTS: We found that minocycline had a profound acute effect on the microbiota diversity and composition, which was paralleled by the subsequent normalization of spinal cord injury-induced suppression of cytokines/chemokines. Importantly, gut dysbiosis following spinal cord injury has been linked to the development of anxiety-like behavior, which was also decreased by minocycline. Furthermore, although minocycline attenuated spinal cord injury-induced microglial activation, it did not affect the lesion size or promote measurable motor recovery. CONCLUSION: We show that minocycline's microbiota effects precede its long-term effects on systemic cytokines and chemokines following spinal cord injury. These results provide an exciting new target of minocycline as a therapeutic for central nervous system diseases and injuries.


Asunto(s)
Ansiedad/etiología , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/etiología , Minociclina/efectos adversos , Minociclina/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Ansiedad/inducido químicamente , Citocinas/sangre , Citocinas/efectos de los fármacos , Modelos Animales de Enfermedad , Disbiosis/etiología , Femenino , Inflamación/inducido químicamente , Inflamación/patología , Microglía/efectos de los fármacos , Microglía/patología , Ratas , Ratas Endogámicas Lew , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/patología
8.
Biology (Basel) ; 10(4)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804928

RESUMEN

Spinal cord injury (SCI) causes gut dysbiosis and an increased prevalence of depression and anxiety. Previous research showed a link between these two consequences of SCI by using a fecal transplant from healthy rats which prevented both SCI-induced microbiota changes and the subsequent development of anxiety-like behaviour. However, whether the physical and mental state of the donor are important factors in the efficacy of FMT therapy after SCI remains unknown. In the present study, rats received a fecal transplant following SCI from uninjured donors with increased baseline levels of anxiety-like behaviour and reduced proportion of Lactobacillus in their stool. This fecal transplant increased intestinal permeability, induced anxiety-like behaviour, and resulted in minor but long-term alterations in the inflammatory state of the recipients compared to vehicle controls. There was no significant effect of the fecal transplant on motor recovery in rehabilitative training, suggesting that anxiety-like behaviour did not affect the motivation to participate in rehabilitative therapy. The results of this study emphasize the importance of considering both the microbiota composition and the mental state of the donor for fecal transplants following spinal cord injury.

9.
Exp Neurol ; 340: 113647, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33600814

RESUMEN

Testing and training animals in motor and related tasks is a cornerstone of pre-clinical behavioural and rehabilitative neuroscience. Yet manually testing and training animals in these tasks is time consuming and analyses are often subjective. Consequently, there have been many recent advances in automating both the administration and analyses of animal behavioural training and testing. This review is an in-depth appraisal of the history of, and recent developments in, the automation of animal behavioural assays used in neuroscience. We describe the use of common locomotor and non-locomotor tasks used for motor training and testing before and after nervous system injury. This includes a discussion of how these tasks help us to understand the underlying mechanisms of neurological repair and the utility of some tasks for the delivery of rehabilitative training to enhance recovery. We propose two general approaches to automation: automating the physical administration of behavioural tasks (i.e., devices used to facilitate task training, rehabilitative training, and motor testing) and leveraging the use of machine learning in behaviour analysis to generate large volumes of unbiased and comprehensive data. The advantages and disadvantages of automating various motor tasks as well as the limitations of machine learning analyses are examined. In closing, we provide a critical appraisal of the current state of automation in animal behavioural neuroscience and a prospective on some of the advances in machine learning we believe will dramatically enhance the usefulness of these approaches for behavioural neuroscientists.


Asunto(s)
Automatización/métodos , Conducta Animal/fisiología , Aprendizaje Automático , Destreza Motora/fisiología , Rehabilitación Neurológica/métodos , Desempeño Psicomotor/fisiología , Animales , Humanos , Aprendizaje Automático/tendencias , Rehabilitación Neurológica/tendencias , Plasticidad Neuronal/fisiología , Recuperación de la Función/fisiología
10.
Exp Neurol ; 339: 113543, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33290776

RESUMEN

Task specific rehabilitation training is commonly used to treat motor dysfunction after neurological injures such as spinal cord injury (SCI), yet the use of task specific training in preclinical animal studies of SCI is not common. This is due in part to the difficulty in training animals to perform specific motor tasks, but also due to the lack of knowledge about optimal rehabilitation training parameters to maximize recovery. The single pellet reaching, grasping and retrieval (SPRGR) task (a.k.a. single pellet reaching task or Whishaw task) is a skilled forelimb motor task used to provide rehabilitation training and test motor recovery in rodents with cervical SCI. However, the relationships between the amount, duration, intensity, and timing of training remain poorly understood. In this study, using automated robots that allow rats with cervical SCI ad libitum access to self-directed SPRGR rehabilitation training, we show clear relationships between the total amount of rehabilitation training, the intensity of training (i.e., number of attempts/h), and performance in the task. Specifically, we found that rats naturally segregate into High and Low performance groups based on training strategy and performance in the task. Analysis of the different training strategies showed that more training (i.e., increased number of attempts in the SPRGR task throughout rehabilitation training) at higher intensities (i.e., number of attempts per hour) increased performance in the task, and that improved performance in the SPRGR task was linked to differences in corticospinal tract axon collateral densities in the injured spinal cords. Importantly, however, our data also indicate that rehabilitation training becomes progressively less efficient (i.e., less recovery for each attempt) as both the amount and intensity of rehabilitation training increases. Finally, we found that Low performing animals could increase their training intensity and transition to High performing animals in chronic SCI. These results highlight the rehabilitation training strategies that are most effective to regain skilled forelimb motor function after SCI, which will facilitate pre-clinical rehabilitation studies using animal models and could be beneficial in the development of more efficient clinical rehabilitation training strategies.


Asunto(s)
Médula Cervical/lesiones , Miembro Anterior/fisiología , Destreza Motora/fisiología , Recuperación de la Función/fisiología , Autocuidado/métodos , Traumatismos de la Médula Espinal/rehabilitación , Animales , Femenino , Ratas , Ratas Endogámicas Lew , Autocuidado/instrumentación , Traumatismos de la Médula Espinal/fisiopatología
11.
J Neurosci ; 40(22): 4297-4308, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32371602

RESUMEN

Neuropathic pain is an intractable medical condition with few or no options for effective treatment. Emerging evidence shows a strong structure-function relationship between dendritic spine dysgenesis and the presence of neuropathic pain. Postmortem tissue analyses can only imply dynamic structural changes associated with injury-induced pain. Here, we profiled the in vivo dynamics of dendritic spines over time on the same superficial dorsal horn (lamina II) neurons before and after peripheral nerve injury-induced pain. We used a two-photon, whole-animal imaging paradigm that permitted repeat imaging of the same dendritic branches of these neurons in C57/Bl6 Thy1-YFP male mice. Our study demonstrates, for the first time, the ongoing, steady-state changes in dendritic spine dynamics in the dorsal horn associated with peripheral nerve injury and pain. Ultimately, the relationship between altered dendritic spine dynamics and neuropathic pain may serve as a structure-based opportunity to investigate mechanisms of pain following injury and disease.SIGNIFICANCE STATEMENT This work is important because it demonstrates for the first time: (1) the powerful utility of intravital study of dendritic spine dynamics in the superficial dorsal horn; (2) that nerve injury-induced pain triggers changes in dendritic spine steady-state behavior in the spinal cord dorsal horn; and (3) this work opens the door to further investigations in vivo of spinal cord dendritic spine dynamics in the context of injury and disease.


Asunto(s)
Espinas Dendríticas/patología , Traumatismos de los Nervios Periféricos/patología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía de Fluorescencia por Excitación Multifotónica , Traumatismos de los Nervios Periféricos/fisiopatología , Asta Dorsal de la Médula Espinal/patología , Asta Dorsal de la Médula Espinal/fisiopatología
12.
J Neurophysiol ; 124(1): 63-85, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32459555

RESUMEN

Persistent inward calcium and sodium currents (IP) activated during motoneuron recruitment help synaptic inputs maintain self-sustained firing until derecruitment. Here, we estimate the contribution of the IP to self-sustained firing in human motoneurons of varying recruitment threshold by measuring the difference in synaptic input needed to maintain minimal firing once the IP is fully activated compared with the larger synaptic input required to initiate firing before full IP activation. Synaptic input to ≈20 dorsiflexor motoneurons simultaneously recorded during ramp contractions was estimated from firing profiles of motor units decomposed from high-density surface electromyography (EMG). To avoid errors introduced when using high-threshold units firing in their nonlinear range, we developed methods where the lowest threshold units firing linearly with force were used to construct a composite (control) unit firing rate profile to estimate synaptic input to higher threshold (test) units. The difference in the composite firing rate (synaptic input) at the time of test unit recruitment and derecruitment (ΔF = Frecruit - Fderecruit) was used to measure IP amplitude that sustained firing. Test units with recruitment thresholds 1-30% of maximum had similar ΔF values, which likely included both slow and fast motor units activated by small and large motoneurons, respectively. This suggests that the portion of the IP that sustains firing is similar across a wide range of motoneuron sizes.NEW & NOTEWORTHY A new method of estimating synaptic drive to multiple, simultaneously recorded motor units provides evidence that the portion of the depolarizing drive from persistent inward currents that contributes to self-sustained firing is similar across motoneurons of different sizes.


Asunto(s)
Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Reclutamiento Neurofisiológico/fisiología , Potenciales Sinápticos/fisiología , Adulto , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
13.
J Neurophysiol ; 124(1): 49-62, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32459560

RESUMEN

The aim of the study was to examine whether the sustained increases in the excitability of afferent fibers traversing the dorsal columns evoked by their polarization depend on the branching points of these fibers. To this end, the effects of epidural polarization were compared in four spinal regions in deeply anesthetized rats; two with the densest collateralization of muscle afferent fibers (above motor nuclei and Clarke's column) and two where the collateralization is more sparse (rostral and caudal to motor nuclei, respectively. The degree of collateralization in different segments was reconstructed in retrogradely labeled afferent fibers in the rat. Nerve volleys evoked in peripheral nerves by electrical stimulation of the dorsal columns within these regions were used as a measure of the excitability of the stimulated fibers. Potent increases in the excitability were evoked by polarization above motor nuclei and Clarke's column, both during constant direct current (DC) polarization (1 µA for 1 min) and for at least 30 min following DC polarization. Smaller excitability increases occurred during the polarization within other regions and were thereafter either absent or rapidly declined after its termination. The postpolarization increases in excitability were counteracted by the GABAA receptor antagonist bicuculline and the α5GABAA extrasynaptic receptor antagonist L655708 and enhanced by the GABAA receptor agonist muscimol and by ionophoretically applied GABA. As extrasynaptic α5GABAA receptors have been found close to Na channels within branching points, these results are consistent with the involvement of branching points in the induction of the sustained postpolarization increases in fiber excitability.NEW & NOTEWORTHY Polarization of sensory fibers traversing dorsal columns of the spinal cord may considerably increase the excitability of these fibers. We show that this involves the effects of current at branching points of afferent fibers and depends on extrasynaptic effects of GABA. These results contribute to our understanding of the mechanism underlying plasticity of activation of nerve fibers and may be used to increase the effectiveness of epidural stimulation in humans and recovery of spinal functions.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Fibras Nerviosas Mielínicas/fisiología , Plasticidad Neuronal/fisiología , Neuronas Aferentes/fisiología , Nervios Periféricos/fisiología , Médula Espinal/fisiología , Ácido gamma-Aminobutírico/fisiología , Anestesia , Animales , Estimulación Eléctrica , Fenómenos Electrofisiológicos/efectos de los fármacos , Espacio Epidural , Femenino , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Masculino , Plasticidad Neuronal/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Nervios Periféricos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
15.
PLoS One ; 15(1): e0226128, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31940312

RESUMEN

Secondary manifestations of spinal cord injury beyond motor and sensory dysfunction can negatively affect a person's quality of life. Spinal cord injury is associated with an increased incidence of depression and anxiety; however, the mechanisms of this relationship are currently not well understood. Human and animal studies suggest that changes in the composition of the intestinal microbiota (dysbiosis) are associated with mood disorders. The objective of the current study is to establish a model of anxiety following a cervical contusion spinal cord injury in rats and to determine whether the microbiota play a role in the observed behavioural changes. We found that spinal cord injury caused dysbiosis and increased symptoms of anxiety-like behaviour. Treatment with a fecal transplant prevented both spinal cord injury-induced dysbiosis as well as the development of anxiety-like behaviour. These results indicate that an incomplete unilateral cervical spinal cord injury can cause affective disorders and intestinal dysbiosis, and that both can be prevented by treatment with fecal transplant therapy.


Asunto(s)
Ansiedad/complicaciones , Ansiedad/prevención & control , Conducta Animal , Disbiosis/complicaciones , Disbiosis/prevención & control , Trasplante de Microbiota Fecal , Traumatismos de la Médula Espinal/complicaciones , Animales , Disbiosis/microbiología , Microbioma Gastrointestinal , Aprendizaje por Laberinto , Ratas , Recuperación de la Función , Traumatismos de la Médula Espinal/microbiología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/psicología
16.
J Neurophysiol ; 121(5): 1591-1608, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625007

RESUMEN

The monosynaptic stretch reflex (MSR) plays an important role in feedback control of movement and posture but can also lead to unstable oscillations associated with tremor and clonus, especially when increased with spinal cord injury (SCI). To control the MSR and clonus after SCI, we examined how serotonin regulates the MSR in the sacrocaudal spinal cord of rats with and without a chronic spinal transection. In chronic spinal rats, numerous 5-HT receptor agonists, including zolmitriptan, methylergonovine, and 5-HT, inhibited the MSR with a potency highly correlated to their binding affinity to 5-HT1D receptors and not other 5-HT receptors. Selective 5-HT1D receptor antagonists blocked this agonist-induced inhibition, although antagonists alone had no action, indicating a lack of endogenous or constitutive receptor activity. In normal uninjured rats, the MSR was likewise inhibited by 5-HT, but at much higher doses, indicating a supersensitivity after SCI. This supersensitivity resulted from the loss of the serotonin transporter SERT with spinal transection, because normal and injured rats were equally sensitive to 5-HT after SERT was blocked or to agonists not transported by SERT (zolmitriptan). Immunolabeling revealed that the 5-HT1D receptor was confined to superficial lamina of the dorsal horn, colocalized with CGRP-positive C-fibers, and eliminated by dorsal rhizotomy. 5-HT1D receptor labeling was not found on large proprioceptive afferents or α-motoneurons of the MSR. Thus serotonergic inhibition of the MSR acts indirectly by modulating C-fiber activity, opening up new possibilities for modulating reflex function and clonus via pain-related pathways. NEW & NOTEWORTHY Brain stem-derived serotonin potently inhibits afferent transmission in the monosynaptic stretch reflex. We show that serotonin produces this inhibition exclusively via 5-HT1D receptors, and yet these receptors are paradoxically mostly confined to C-fibers. This suggests that serotonin acts by gating of C-fiber activity, which in turn modulates afferent transmission to motoneurons. We also show that the classic supersensitivity to 5-HT after spinal cord injury results from a loss of SERT, and not 5-HT1D receptor plasticity.


Asunto(s)
Fibras Nerviosas Amielínicas/metabolismo , Receptor de Serotonina 5-HT1D/metabolismo , Reflejo de Estiramiento , Traumatismos de la Médula Espinal/metabolismo , Animales , Femenino , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/fisiología , Ratas , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Antagonistas del Receptor de Serotonina 5-HT1/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Traumatismos de la Médula Espinal/fisiopatología
17.
J Neurophysiol ; 121(4): 1352-1367, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625014

RESUMEN

Spinal cord injury leads to a devastating loss of motor function and yet is accompanied by a paradoxical emergence of muscle spasms, which often involve complex muscle activation patterns across multiple joints, reciprocal muscle timing, and rhythmic clonus. We investigated the hypothesis that spasms are a manifestation of partially recovered function in spinal central pattern-generating (CPG) circuits that normally coordinate complex postural and locomotor functions. We focused on the commissural propriospinal V3 neurons that coordinate interlimb movements during locomotion and examined mice with a chronic spinal transection. When the V3 neurons were optogenetically activated with a light pulse, a complex coordinated pattern of motoneuron activity was evoked with reciprocal, crossed, and intersegmental activity. In these same mice, brief sensory stimulation evoked spasms with a complex pattern of activity very similar to that evoked by light, and the timing of these spasms was readily reset by activation of V3 neurons. Given that V3 neurons receive abundant sensory input, these results suggest that sensory activation of V3 neurons is alone sufficient to generate spasms. Indeed, when we silenced V3 neurons optogenetically, sensory evoked spasms were inhibited. Also, inhibiting general CPG activity by blocking N-methyl-d-aspartate (NMDA) receptors inhibited V3 evoked activity and associated spasms, whereas NMDA application did the opposite. Furthermore, overwhelming the V3 neurons with repeated optogenetic stimulation inhibited subsequent sensory evoked spasms, both in vivo and in vitro. Taken together, these results demonstrate that spasms are generated in part by sensory activation of V3 neurons and associated CPG circuits. NEW & NOTEWORTHY We investigated whether locomotor-related excitatory interneurons (V3) play a role in coordinating muscle spasm activity after spinal cord injury (SCI). Unexpectedly, we found that these neurons not only coordinate reciprocal motor activity but are critical for initiating spasms, as well. More generally, these results suggest that V3 neurons are important in initiating and coordinating motor output after SCI and thus provide a promising target for restoring residual motor function.


Asunto(s)
Interneuronas/fisiología , Espasticidad Muscular/fisiopatología , Músculo Esquelético/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Generadores de Patrones Centrales/fisiopatología , Extremidades/inervación , Extremidades/fisiología , Femenino , Masculino , Ratones , Neuronas Motoras/fisiología , Contracción Muscular , Músculo Esquelético/inervación , Nervios Espinales/fisiopatología
18.
Exp Brain Res ; 237(3): 663-672, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30539210

RESUMEN

Lightly touching a stable reference is associated with sway reduction during standing. Unexpected displacement of the touch reference results in a false-positive balance reaction in some participants, but only with the first such disturbance. This study investigated whether light touch reduces standing sway (1) after the touch reference becomes unreliable, and (2) when participants are aware the touch reference is unreliable. 40 healthy adults, 20 that were naïve to the possibility of a touch reference displacement and 20 that were made aware prior to testing, were asked to stand while lightly touching (< 1 N) a reference with normal vision or vision occluded. Motion of the center of pressure was used to estimate standing sway before and after a single displacement, and then multiple displacements, of a touch reference. Sway area was always reduced while touching the reference, compared to standing with vision occluded without touch, even when the reference was known to be unreliable. In addition, sway area was further reduced following a single touch displacement in Naïve participants when vision was occluded. These results suggest that tactile cues from the finger interact with postural control in a complex manner, depending upon the expectation and experience of the characteristics of the touched object. Taken together, light touch can (1) be used as a spatial reference that assists in sway stabilization, (2) be a source of movement variability that impacts the performance of a skilled task, or (3) introduce noise in the sensory channels impacting fidelity.


Asunto(s)
Equilibrio Postural/fisiología , Posición de Pie , Percepción del Tacto/fisiología , Tacto/fisiología , Percepción Visual/fisiología , Adolescente , Adulto , Femenino , Dedos/fisiología , Humanos , Masculino , Adulto Joven
19.
J Neurophysiol ; 120(6): 2953-2974, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256739

RESUMEN

Activation of GABAA receptors on sensory axons produces a primary afferent depolarization (PAD) that modulates sensory transmission in the spinal cord. While axoaxonic synaptic contacts of GABAergic interneurons onto afferent terminals have been extensively studied, less is known about the function of extrasynaptic GABA receptors on afferents. Thus, we examined extrasynaptic α5GABAA receptors on low-threshold proprioceptive (group Ia) and cutaneous afferents. Afferents were impaled with intracellular electrodes and filled with neurobiotin in the sacrocaudal spinal cord of rats. Confocal microscopy was used to reconstruct the afferents and locate immunolabelled α5GABAA receptors. In all afferents α5GABAA receptors were found throughout the extensive central axon arbors. They were most densely located at branch points near sodium channel nodes, including in the dorsal horn. Unexpectedly, proprioceptive afferent terminals on motoneurons had a relative lack of α5GABAA receptors. When recording intracellularly from these afferents, blocking α5GABAA receptors (with L655708, gabazine, or bicuculline) hyperpolarized the afferents, as did blocking neuronal activity with tetrodotoxin, indicating a tonic GABA tone and tonic PAD. This tonic PAD was increased by repeatedly stimulating the dorsal root at low rates and remained elevated for many seconds after the stimulation. It is puzzling that tonic PAD arises from α5GABAA receptors located far from the afferent terminal where they can have relatively little effect on terminal presynaptic inhibition. However, consistent with the nodal location of α5GABAA receptors, we find tonic PAD helps produce sodium spikes that propagate antidromically out the dorsal roots, and we suggest that it may well be involved in assisting spike transmission in general. NEW & NOTEWORTHY GABAergic neurons are well known to form synaptic contacts on proprioceptive afferent terminals innervating motoneurons and to cause presynaptic inhibition. However, the particular GABA receptors involved are unknown. Here, we examined the distribution of extrasynaptic α5GABAA receptors on proprioceptive Ia afferents. Unexpectedly, these receptors were found preferentially near nodal sodium channels throughout the afferent and were largely absent from afferent terminals. These receptors produced a tonic afferent depolarization that modulated sodium spikes, consistent with their location.


Asunto(s)
Potenciales de la Membrana , Neuronas Aferentes/metabolismo , Propiocepción , Receptores de GABA-A/metabolismo , Canales de Sodio/metabolismo , Médula Espinal/metabolismo , Animales , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Inhibición Neural , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Ratas , Ratas Sprague-Dawley , Médula Espinal/citología , Médula Espinal/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología
20.
J Neurotrauma ; 35(16): 1970-1985, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30074874

RESUMEN

Rehabilitative motor training is currently one of the most widely used approaches to promote moderate recovery following injuries of the central nervous system. Such training is generally applied in the clinical setting, whereas it is not standard in preclinical research. This is a concern as it is becoming increasingly apparent that neuroplasticity enhancing treatments require training or some form of activity as a co-therapy to promote functional recovery. Despite the importance of training and the many open questions regarding its mechanistic consequences, its use in preclinical animal models is rather limited. Here we review approaches, findings and challenges when training is applied in animal models of spinal cord injury, and we suggest recommendations to facilitate the integration of training using an appropriate study design, into pre-clinical studies.


Asunto(s)
Modelos Animales de Enfermedad , Condicionamiento Físico Animal/métodos , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/rehabilitación , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...