RESUMEN
Salinity restricts the growth of irrigated fruit crops in semi-arid areas, making it crucial to find ways to reduce salt stress. One effective strategy is using eliciting substances like ascorbic acid. In this context, the objective of this study was to evaluate the effects of application methods and concentrations of ascorbic acid on the morphophysiology and production of sour passion fruit irrigated with saline water. The experiment was organized using a factorial randomized block design (3 × 3 × 2) with three application methods (soaking, spraying, and soaking and spraying), three concentrations of ascorbic acid (0, 0.8, and 1.6 mM) and two levels of electrical conductivity of irrigation water-ECw (0.8 and 3.8 dS m-1). Foliar spraying of ascorbic acid at a concentration of 0.8 mM mitigated the effects of salt stress on the relative water content of leaves, the synthesis of photosynthetic pigments, gas exchange, and total production of sour passion fruit when irrigated with ECw of 3.8 dS m-1. Plants grown with water of 0.8 dS m-1 and under foliar application of 0.8 mM of ascorbic acid achieved the maximum growth in stem diameter and the greatest volume of pulp in the fruits.
RESUMEN
Introduction: The reproductive system is tightly regulated by environmental and physiological signals. Melatonin, known as the hormone of darkness, plays a crucial role in regulating both the circadian and reproductive systems in mammals. Hypothyroidism is a key endocrine disorder that harms the reproductive system. Despite many studies on melatonin's effects on the reproductive system, there is conflicting information regarding melatonin synthesis modulation in hypothyroidism. The objective of this study was to investigate the modulation of plasma melatonin levels and gene expression of Aanat and Asmt in the pineal gland and gonads of rats with hypothyroidism at different times of the day. Methods: Female and male Wistar rats were divided into control and hypothyroid groups. Hypothyroidism was induced using propylthiouracil (PTU) for 15 days, rats were euthanized six hours after lights on (ZT6), before lights off (ZT11.5), and six hours after lights off (ZT18). Free thyroxine (FT4) and melatonin were quantified in plasma, and gene expressions of melatonin synthesizing enzymes (Aanat and Asmt) were measured in pineal and sexual organs (testis and ovary). Also, morphological analysis was performed in sexual organs. Results: The results reveal some disparities between the sexes. Hypothyroidism reduced antral and primary follicles in the ovary, and reduced the weight of testis, epididymis, and prostate. In relation to gene expression, we observed a reduction in Aanat expression in the pineal gland during the light phase (ZT6), and in males, this reduction occurred during the dark phase (ZT18). Regarding Asmt expression, there was a decrease in females also during the dark phase (ZT18). In the gonads, there was an increase in expression in both sexes at ZT11.5. Additionally, it was interesting to observe the association between FT4 levels and Asmt expression in the gonads. Conclusions: This study showed that acute hypothyroidism can affect components of the melatonergic system in gonads, particularly gene expression of melatonin synthesis enzymes (Aanat and Asmt) contributing to changes in reproduction organs during disease progression. These findings enhance our understanding of melatonin synthesis in the reproductive system during hypothyroidism, showing distinct responses in male and female rats, and suggest that hypothyroidism affects the circadian rhythmicity of melatonin synthesis in a sex-dependent manner.
Asunto(s)
Acetilserotonina O-Metiltransferasa , Hipotiroidismo , Melatonina , Glándula Pineal , Ratas Wistar , Testículo , Animales , Femenino , Masculino , Ratas , Acetilserotonina O-Metiltransferasa/metabolismo , Acetilserotonina O-Metiltransferasa/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo , N-Acetiltransferasa de Arilalquilamina/genética , Gónadas/metabolismo , Hipotiroidismo/metabolismo , Melatonina/sangre , Ovario/metabolismo , Ovario/patología , Glándula Pineal/metabolismo , Propiltiouracilo , Testículo/metabolismo , Testículo/patologíaRESUMEN
Dens invaginatus (DI) is one of the developmental dental anomalies that results in an invagination of the enamel organ into the dental papila during odontogenesis. The purpose of this study is to report a case of nonsurgical endodontic treatment of an Oehlers type II DI in a right maxillary lateral incisor with an extensive periapical damage, along with the two-year clinical and tomographic follow-up. A 30-year-old patient was referred for endodontic treatment of tooth #12. On clinical examination, a change in the shape and color of the crown was observed. The tooth responded negative to pulp sensibility, percussion, palpation and mobility tests. After tomographic evaluation, an Oehlers type II DI was visualized, in addition to an extensive periradicular lesion. The diagnosis was asymptomatic apical periodontitis. The treatment was carried out in two sessions, through intense enhancement of the auxiliary chemical substance with passive ultrasonic irrigation, XP-Endo Finisher and the use of hydroxide-based intracanal medication. Appropriate treatment in cases with anatomic variations requires an accurate and early diagnosis based on clinical examination and radiographic images. A two-year follow-up of the present case showed that the correct diagnosis associated with appropriate instrumentation techniques, supplementary disinfection, and adequate three-dimensional sealing of the canal with filling material, resulted in regression of the periradicular lesion and bone repair.
RESUMEN
Abstract Objective: To investigate the effectiveness of linezolid and vancomycin for the treatment of nosocomial infections in children under 12 years old. Data sources: This is a systematic review in which five randomized clinical trials about the effectiveness of linezolid and vancomycin, involving a total of 429 children with nosocomial infections, were evaluated. They were searched in scientific databases: PubMed, Bvs, and SciELO. Summary of findings: The main nosocomial infections that affected children were bacteremia, skin, and soft tissue infections followed by nosocomial pneumonia. Most infections were caused by Gram-positive bacteria, which all studies showed infections caused by Staphylococcus aureus, with methicillin-resistant S. aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci strains being isolated. Both linezolid and vancomycin showed high therapeutic efficacy against different types of nosocomial infections, ranging from 84.4% to 94% for linezolid and 76.9% to 90% for vancomycin. Patients receiving linezolid had lower rates of rash and red man syndrome compared to those receiving vancomycin. However, despite the adverse reactions, antimicrobials can be safely administered to children to treat nosocomial infections caused by resistant Gram-positive bacteria. Conclusion: Both linezolid and vancomycin showed good efficacy in the treatment of bacterial infections caused by resistant Gram-positive bacteria in hospitalized children. However, linezolid stands out regarding its pharmacological safety. Importantly, to strengthen this conclusion, further clinical trials are needed to provide additional evidence.
RESUMEN
Saliva measurements serve as a noninvasive tool for clinically monitoring newborns (NB) and children, a vulnerable population with promising potential for both research and clinical practice. Saliva acts as a repository for various inflammatory biomarkers involved in diverse biological functions. Particularly for children, it offers numerous advantages when compared to plasma and urine sampling. Nevertheless, there is a significant knowledge gap regarding detectable levels of cytokines in the saliva of newborns and children, as well as studies aiming to assess the relationship of this content with physiological and pathological processes. OBJECTIVES: To characterize the levels of 11 inflammatory mediators (IFNg, IL1b, IL2, IL4, IL6, IL8, IL10, IL12, IL17, TNF, and VEGF) in saliva samples from NB on the first and second day of hospitalization in the Neonatal Intensive Care Unit (NICU). METHOD: Exploratory study, descriptive, nested within a primary clinical, observational, and prospective study, conducted in the NICU of a public hospital in São Paulo, Brazil. Demographic data and vital signs were recorded in the clinical records of 90 NB, and five saliva samples from 5 NB were collected between the first and second day of life (D1-D2) at approximately 8-hr intervals (8-9 am, 4-5 pm, and 11-12 pm). Saliva samples were used for the measurement of 11 cytokines (IFNg, IL1b, IL2, IL4, IL6, IL8, IL10, IL12, IL17, TNF, and VEGF). RESULTS: Five NBs participated in this exploratory study, and the vital signs showed variability from the first (D1) to the second day (D2) of hospitalization, variability similar to that of the total population of the primary study. The presence and levels of the 11 cytokines were detected in the saliva samples, as well as a statistical correlation between 10 cytokines (IFNg, IL1b, IL2, IL4, IL6, IL10, IL12, IL17, TNF, and VEGF) and vital signs. CONCLUSIONS: The novelty of measuring inflammatory mediators in saliva samples from hospitalized NBs in the NICU is highlighted, providing support and new perspectives for the development of clinical and experimental research and an opportunity for developing and implementing new salivary biomarkers in different population segments.
Asunto(s)
Biomarcadores , Citocinas , Unidades de Cuidado Intensivo Neonatal , Saliva , Humanos , Saliva/química , Recién Nacido , Biomarcadores/análisis , Biomarcadores/metabolismo , Masculino , Femenino , Citocinas/análisis , Citocinas/metabolismo , Estudios Prospectivos , Brasil , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/análisis , HospitalizaciónRESUMEN
The growing demand for food production has led to an increase in agricultural areas, including many with low and irregular rainfall, stressing the importance of studies aimed at mitigating the harmful effects of water stress. From this perspective, the objective of this study was to evaluate calcium pyruvate as an attenuator of water deficit on chlorophyll a fluorescence of five sugarcane genotypes. The experiment was conducted in a plant nursery where three management strategies (E1-full irrigation, E2-water deficit with the application of 30 mM calcium pyruvate, and E3-water deficit without the application of calcium pyruvate) and five sugarcane genotypes (RB863129, RB92579, RB962962, RB021754, and RB041443) were tested, distributed in randomized blocks, in a 3 × 5 factorial design with three replications. There is dissimilarity in the fluorescence parameters and photosynthetic pigments of the RB863129 genotype in relation to those of the RB041443, RB96262, RB021754, and RB92579 genotypes. Foliar application of calcium pyruvate alleviates the effects of water deficit on the fluorescence parameters of chlorophyll a and photosynthetic pigments in sugarcane, without interaction with the genotypes. However, subsequent validation tests will be necessary to test and validate the adoption of this technology under field conditions.
RESUMEN
Immune-pineal axis activation is part of the assembly of immune responses. Proinflammatory cytokines inhibit the pineal synthesis of melatonin while inducing it in macrophages by mechanisms dependent on nuclear factor-κB (NF-κB) activation. Cytokines activating the Janus kinase/signal transducer and activator of transcription (STAT) pathways, such as interferon-gamma (IFN-γ) and interleukin-10 (IL-10), modulate melatonin synthesis in the pineal, bone marrow (BM), and spleen. The stimulatory effect of IFN-γ upon the pineal gland depends on STAT1/NF-κB interaction, but the mechanisms controlling IL-10 effects on melatonin synthesis remain unclear. Here, we evaluated the role of STAT3 and NF-κB activation by IL-10 upon the melatonin synthesis of rats' pineal gland, BM, spleen, and peritoneal cells. The results show that IL-10-induced interaction of (p)STAT3 with specific NF-κB dimmers leads to different cell effects. IL-10 increases the pineal's acetylserotonin O-methyltransferase (ASMT), N-acetylserotonin, and melatonin content via nuclear translocation of NF-κB/STAT3. In BM, the nuclear translocation of STAT3/p65-NF-κB complexes increases ASMT expression and melatonin content. Increased pSTAT3/p65-NF-κB nuclear translocation in the spleen enhances phosphorylated serotonin N-acetyltransferase ((p)SNAT) expression and melatonin content. Conversely, in peritoneal cells, IL-10 leads to NF-κB p50/p50 inhibitory dimmer nuclear translocation, decreasing (p)SNAT expression and melatonin content. In conclusion, IL-10's effects on melatonin production depend on the NF-κB subunits interacting with (p)STAT3. Thus, variations of IL-10 levels and downstream pathways during immune responses might be critical regulatory factors adjusting pineal and extra-pineal synthesis of melatonin.
Asunto(s)
Melatonina , Glándula Pineal , Ratas , Animales , FN-kappa B/metabolismo , Glándula Pineal/metabolismo , Melatonina/farmacología , Interleucina-10/metabolismo , Transducción de SeñalRESUMEN
OBJECTIVE: To investigate the effectiveness of linezolid and vancomycin for the treatment of nosocomial infections in children under 12 years old. DATA SOURCES: This is a systematic review in which five randomized clinical trials about the effectiveness of linezolid and vancomycin, involving a total of 429 children with nosocomial infections, were evaluated. They were searched in scientific databases: PubMed, Bvs, and SciELO. SUMMARY OF FINDINGS: The main nosocomial infections that affected children were bacteremia, skin, and soft tissue infections followed by nosocomial pneumonia. Most infections were caused by Gram-positive bacteria, which all studies showed infections caused by Staphylococcus aureus, with methicillin-resistant S. aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci strains being isolated. Both linezolid and vancomycin showed high therapeutic efficacy against different types of nosocomial infections, ranging from 84.4% to 94% for linezolid and 76.9% to 90% for vancomycin. Patients receiving linezolid had lower rates of rash and red man syndrome compared to those receiving vancomycin. However, despite the adverse reactions, antimicrobials can be safely administered to children to treat nosocomial infections caused by resistant Gram-positive bacteria. CONCLUSION: Both linezolid and vancomycin showed good efficacy in the treatment of bacterial infections caused by resistant Gram-positive bacteria in hospitalized children. However, linezolid stands out regarding its pharmacological safety. Importantly, to strengthen this conclusion, further clinical trials are needed to provide additional evidence.
Asunto(s)
Antibacterianos , Infección Hospitalaria , Linezolid , Vancomicina , Humanos , Linezolid/uso terapéutico , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Vancomicina/uso terapéutico , Niño , Antibacterianos/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Preescolar , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Lactante , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/tratamiento farmacológicoRESUMEN
Objective This study proposes the Niza box, a device created to reduce interpretive errors among professionals and facilitate the correct positioning of structures by standardizing orthopedic radiography of the foot in anteroposterior, loaded, and Saltzman views. Methods Descriptive study based on material collected at an Orthopedics Ambulatory from a tertiary service in a large Brazilian city. The X-ray device was a Lotus X, model HF 500 M, 500 milliamperes and 125 kilovolts capacity, 100 cm focus-film distance, and 24 × 30 cm radiographic chassis. Device controls were set at 100 mA, 5 mA/sec, and 60 kilovolts, depending on the variable size of the foot. The same team of previously trained radiography technicians performed the tests under the authors' supervision. The chassis were positioned in three specific Niza box spaces per the proposed incidence. Data from 50 images from people between 18 and 70 years old were analyzed. Results Radiographs taken using the proposed device usually had a satisfactory quality, allowing correct identification of the anatomical elements of the foot and ankle and angular reconstruction. Small image variations due to foot size were acceptable and expected, allowing radiograph standardization. Conclusion The Niza box is a good method for minimizing interference and avoiding radiographic interpretation errors, providing quality and agility to the examination, and reducing cost and unnecessary repetitions. It is an innovative, low-cost device made of recyclable and biodegradable material.
RESUMEN
The objective of this study was to evaluate the synthesis of photosynthetic pigments, gas exchange, and photochemical efficiency of sour passion fruit genotypes irrigated with saline water under the conditions of the semi-arid region of Paraíba state, Brazil. The experiment was conducted at the experimental farm in São Domingos, PB. A randomized block design was adopted, in a 5 × 3 factorial scheme, with five levels of electrical conductivity of irrigation water-ECw (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1)-and three genotypes of sour passion fruit (Gigante Amarelo-'BRS GA1'; Sol do Cerrado-'BRS SC1'; and Catarina-'SCS 437'. The increase in the electrical conductivity of irrigation water negatively affected most of the physiological characteristics of the sour passion fruit at 154 days after transplanting. Significant differences were observed between sour passion fruit genotypes when its tolerance was subjected to the salinity of irrigation water. There was an increase in the percentage of damage to the cell membrane with the increase in the electrical conductivity of irrigation water, with maximum values of 70.63, 60.86, and 80.35% for the genotypes 'BRS GA1', 'BRS SC1', and SCS 437', respectively, when irrigated with water of 3.5 dS m-1. The genotype 'BRS Sol do Cerrado' showed an increase in the synthesis of photosynthetic pigments when irrigated with water of 3.5 dS m-1, with maximum values estimated at 1439.23 µg mL-1 (Chl a); 290.96 µg mL-1 (Chl b); 1730.19 µg mL-1 (Chl t); and 365.84 µg mL-1 (carotenoids). An increase in photosynthetic efficiency parameters (F0, Fm, and Fv) of the genotype 'BRS Gigante Amarelo' was observed when cultivated with water with high electrical conductivity (3.5 dS m-1).
RESUMEN
Brazil stands out as the largest producer of sour passion fruit; however, the water available for irrigation is mostly saline, which can limit its cultivation. This study was carried out with the objective of evaluating the effects of salicylic acid in the induction of tolerance in sour passion fruit to salt stress. The assay was conducted in a protected environment, using a completely randomized design in a split-plot scheme, with the levels of electrical conductivity of the irrigation water (0.8, 1.6, 2.4, 3.2, and 4.0 dS m-1) considering the plots and concentrations of salicylic acid (0, 1.2, 2.4, and 3.6 mM) the subplots, with three replications. The physiological indices, production components, and postharvest quality of sour passion fruit were negatively affected by the increase in the electrical conductivity of irrigation water, and the effects of salt stress were intensified in the second cycle. In the first cycle, the foliar application of salicylic acid at concentrations between 1.0 and 1.4 mM partially reduced the harmful effects of salt stress on the relative water content of leaves, electrolyte leakage, gas exchange, and synthesis of photosynthetic pigments, in addition to promoting an increase in the yield and quality parameters of sour passion fruit.
RESUMEN
Salicylic acid is a phytohormone that has been used to mitigate the effects of saline stress on plants. In this context, the objective was to evaluate the effect of salicylic acid as a salt stress attenuator on the physiology and growth of precocious-dwarf cashew plants in the post-grafting phase. The study was carried out in a plant nursery using a randomized block design in a 5 × 4 factorial arrangement corresponding to five electrical conductivity levels of irrigation water (0.4, 1.2, 2.0, 2.8, and 3.6 dS m-1) and four salicylic acid concentrations (0, 1.0, 2.0, and 3.0 mM), with three replications. Irrigation water with electrical conductivity levels above 0.4 dS m-1 negatively affected the relative water content in the leaf blade, photosynthetic pigments, the fluorescence of chlorophyll a, and plant growth and increased electrolyte leakage in the leaf blade of precocious-dwarf cashew plants in the absence of salicylic acid. It was verified through the regression analysis that salicylic acid at a concentration of 1.1 mM attenuated the effects of salt stress on the relative water content and electrolyte leakage in the leaf blade, while the concentration of 1.7 mM increased the synthesis of photosynthetic pigments in precocious-dwarf cashew plants.
RESUMEN
Water scarcity is one of the main abiotic factors that limit agricultural production. In this sense, the identification of genotypes tolerant to water deficit associated with irrigation management strategies is extremely important. In this context, the objective of this study was to evaluate the morphology, production, water consumption, and water use efficiency of colored fiber cotton genotypes submitted to irrigation strategies with a water deficit in the phenological phases. Two experiments were conducted in succession. In the first experiment, a randomized block design was used in a 3 × 7 factorial scheme, corresponding to three colored cotton genotypes (BRS Rubi, BRS Jade, and BRS Safira) in seven irrigation management strategies with 40% of the real evapotranspiration (ETr) varying the phenological stages. In the second experiment, the same design was used in a 3 × 10 factorial arrangement (genotypes × irrigation management strategies). The water deficit in the vegetative phase can be used in the first year of cotton cultivation. Among the genotypes, 'BRS Jade' is the most tolerant to water deficit in terms of phytomass accumulation and fiber production.
RESUMEN
The present study aimed to evaluate the effects of the foliar application of hydrogen peroxide on the attenuation of salt stress on the growth, photochemical efficiency, production and water use efficiency of 'All Big' bell pepper plants. The experiment was conducted under greenhouse conditions in Campina Grande, PB, Brazil. Treatments were distributed in a randomized block design, in a 5 × 5 factorial scheme, corresponding to five levels of electrical conductivity of irrigation water (0.8, 1.2, 2.0, 2.6 and 3.2 dS m-1) and five concentrations of hydrogen peroxide (0, 15, 30, 45 and 60 µM), with three replicates. Foliar application of hydrogen peroxide at concentration of 15 µM attenuated the deleterious effects of salt stress on photochemical efficiency, biomass accumulation and production components of bell pepper plants irrigated using water with an electrical conductivity of up to 3.2 dS m-1. Foliar spraying of hydrogen peroxide at a concentration of 60 µM intensified the effects of salt stress. The 'All Big' bell pepper was classified as moderately sensitive to salt stress, with an irrigation water salinity threshold of 1.43 dS m-1 and a unit decrease of 8.25% above this salinity level.
RESUMEN
Abstract Deep vein thrombosis in the upper extremities is uncommon, especially in the pediatric population and in the trauma setting. The diagnosis is challenging, due to its rarity, requiring a high degree of suspicion. We describe a rare case of humeral vein thrombosis after a displaced supracondylar fracture of the humerus in a 7-year-old girl. The risk factors for thromboembolism and sequelae are also discussed. The early detection and treatment are mandatory to prevent poor outcomes, such as fatal thromboembolism.
Resumo Trombose venosa profunda nas extremidades superiores é incomum, especialmente na população pediátrica e no ambiente do trauma. O diagnóstico é desafiador, devido a sua raridade, exigindo alto grau de suspeita. Descrevemos um caso raro de trombose venosa úmera após uma fratura supracondilar deslocada do úmero em uma menina de 7 anos. Os fatores de risco para tromboembolismo e sequelas também são discutidos. A detecção e o tratamento precoces são obrigatórios para evitar desfechos ruins, como tromboembolismo fatal.
Asunto(s)
Humanos , Femenino , Niño , Trombosis de la Vena , Tromboembolia Venosa , Fracturas del HúmeroRESUMEN
Salt stress reduces the yield and quality of colored fiber cotton production, but this problem can be mitigated by the foliar application of hydrogen peroxide in adequate concentrations. In this context, the objective of the present study was to evaluate the production and characteristics of fibers of naturally colored cotton cultivares under irrigation with low- and high-salinity water and leaf application of hydrogen peroxide. The experiment was carried out in a greenhouse under a randomized block design, arranged in 4 × 3 × 2 factorial scheme, corresponding to four concentrations of hydrogen peroxide (0, 25, 50, and 75 µM), three cultivares of colored fiber cotton ('BRS Rubi', 'BRS Topázio', and 'BRS Verde'), and two electrical conductivities of water (0.8 and 5.3 dS m-1), with three replicates and one plant per plot. Irrigation with water of 0.8 dS m-1 associated with a foliar application of 75 µM of hydrogen peroxide favored the lint and seed weight, strength, micronaire index, and maturity of 'BRS Topázio'. The 'BRS Rubi' cotton cultivar showed higher tolerance to salinity, followed by the 'BRS Topázio' and 'BRS Verde' cultivares regarding the yield of seed cotton weight, with reduction below 20% under water of 5.3 dS m-1.
RESUMEN
Animal venoms and their chemical compounds have aroused both empirical and scientific attention for ages. However, there has been a significant increase in scientific investigations in recent decades, allowing the production of various formulations that are helping in the development of many important tools for biotechnological, diagnostic, or therapeutic use, both in human and animal health, as well as in plants. Venoms are composed of biomolecules and inorganic compounds that may have physiological and pharmacological activities that are not related to their principal actions (prey immobilization, digestion, and defense). Snake venom toxins, mainly enzymatic and non-enzymatic proteins, and peptides have been identified as potential prototypes for new drugs and/or models for the development of pharmacologically active structural domains for the treatment of cancer, cardiovascular diseases, neurodegenerative and autoimmune diseases, pain, and infectious-parasitic diseases. This minireview aims to provide an overview of the biotechnological potential of animal venoms, with a focus on snakes, and to introduce the reader to the fascinating world of Applied Toxinology, where animal biodiversity can be used to develop therapeutic and diagnostic applications for humans.
Asunto(s)
Neoplasias , Venenos de Serpiente , Animales , Humanos , Venenos de Serpiente/química , Serpientes/metabolismo , Proteínas/química , Péptidos/farmacología , Neoplasias/tratamiento farmacológicoRESUMEN
A strategy using bacilli was adopted aiming to investigate the mitigation of the effects of water deficit in sesame. An experiment was carried out in a greenhouse with 2 sesame cultivars (BRS Seda and BRS Anahí) and 4 inoculants (pant001, ESA 13, ESA 402, and ESA 441). On the 30th day of the cycle, irrigation was suspended for eight days, and the plants were subjected to physiological analysis using an infrared gas analyzer (IRGA). On the 8th day of water suspension, leaves were collected for analysis: superoxide dismutase, catalase, ascorbate peroxidase, proline, nitrogen, chlorophyll, and carotenoids. At the end of the crop cycle, data on biomass and vegetative growth characteristics were collected. Data were submitted for variance analysis and comparison of means by the Tukey and Shapiro-Wilk tests. A positive effect of inoculants was observed for all characteristics evaluated, contributing to improvements in plant physiology, induction of biochemical responses, vegetative development, and productivity. ESA 13 established better interaction with the BRS Anahí cultivar and ESA 402 with BRS Seda, with an increase of 49% and 34%, respectively, for the mass of one thousand seeds. Thus, biological indicators are identified regarding the potential of inoculants for application in sesame cultivation.
RESUMEN
Hydrogen peroxide at low concentrations has been used as a salt stress attenuator because it induces a positive response in the antioxidant system of plants. This study aimed to assess the gas exchange, quantum yield, and development of soursop plants cv. Morada Nova grown with saline water irrigation and foliar hydrogen peroxide application. The experiment was carried out under greenhouse conditions using a randomized block design in a 4 × 4 factorial scheme corresponding to four levels of electrical conductivity of irrigation water, ECw (0.8, 1.6, 2.4, and 3.2 dS m-1), and four doses of hydrogen peroxide, H2O2 (0, 10, 20, and 30 µM), with three replicates. The use of irrigation water with electrical conductivity above 0.8 dS m-1 inhibited stomatal conductance, internal CO2 concentration, transpiration, maximum fluorescence, crown height, and vegetative vigor index of the Morada Nova cultivar of soursop. Compared to untreated plants, the hydrogen peroxide concentration of 30 µM resulted in greater stomatal conductance. Water salinity of 0.8 dS m-1 with hydrogen peroxide concentrations of 16 and 13 µM resulted in the highest variable fluorescence and quantum efficiency of photosystem II, respectively, of soursop plants cv. Morada Nova at 210 days after transplantation.
RESUMEN
The use of saline waters in irrigated agriculture has become a reality in several regions of the world. However, this practice may cause limitations to growth and development, depending on the tolerance level of the crop. Applying strategies that minimize salt stress in crops is therefore essential, and, in this respect, salicylic acid can act as an antioxidant and enhance the plant's tolerance to salt stress. The objective of this study was to examine the effects of foliar application of salicylic acid on the physiology and production components of naturally colored cotton cv. BRS Jade grown under salt stress. The plants were cultivated on lysimeters in outdoor conditions at the Agro-Food Science and Technology Center, Federal University of Campina Grande, located in Pombal - PB, Brazil. The experiment was laid out in a randomized block design with a 5 × 5 factorial arrangement consisting of five irrigation-water electrical conductivity levels (ECw: 0.3, 1.8, 3.3, 4.8, and 6.3 dS m-1) and five concentrations of salicylic acid (SA: 0, 1.5, 3.0, 4.5, and 6.0 mM), with three replicates. Irrigation with water with salinity levels from 0.3 dS m-1 reduced gas exchange, the synthesis of photosynthetic pigments, and the number of bolls in cotton cv. BRS Jade. Salinity levels from 0.3 dS m-1induced stomatal closure and reduced transpiration, CO2 assimilation rate, the levels of photosynthetic pigments, and production components of cotton cv. BRS Jade. The salicylic acid concentrations of 2.6 and 2.7 mM increased CO2 assimilation rate and stomatal conductance, respectively, in the cotton plants. Foliar application of salicylic acid did not mitigate the effects of salt stress on gas exchange, the synthesis of photosynthetic pigments, or production components of cotton.
O uso de águas salinas na agricultura irrigada vem se tornando uma realidade em diversas regiões do mundo, entretanto, dependendo do nível de tolerância da cultura ocorrem limitações no crescimento e desenvolvimento. Dessa forma, o uso das estratégias que minimizem o estresse salino nas culturas é fundamental, nesta perspectiva, o ácido salicílico pode atuar como antioxidante e contribuir na tolerância das plantas ao estresse salino. Neste sentido, objetivou-se avaliar os efeitos da aplicação foliar de ácido salicílico na fisiologia e nos componentes de produção do algodoeiro naturalmente colorido cv. BRS Jade cultivado sob estresse salino. As plantas foram conduzidas em lisímetros sob condições de céu aberto, no Centro de Ciências e Tecnologia Agroalimentar pertencente à Universidade Federal de Campina Grande, Pombal-PB. O delineamento utilizado foi em blocos casualizados, em esquema fatorial 5 × 5, sendo cinco níveis de condutividade elétrica da água de irrigação - CEa (0,3; 1,8; 3,3; 4,8 e 6,3 dS m-1) e cinco concentrações de ácido salicílico - AS (0; 1,5; 3,0, 4,5 e 6,0 mM) com três repetições. A irrigação com água a partir de 0,3 dS m-1 reduziu as trocas gasosas, a síntese de pigmentos fotossintéticos e o número de capulhos do algodoeiro cv. BRS Jade. A irrigação com água a partir de 0,3 dS m-1 induziu o fechamento estomático e diminuiu a transpiração, a taxa de assimilação de CO2, os teores de pigmentos fotossintéticos e os componentes de produção do algodoeiro cv. BRS Jade. As concentrações de ácido salicílico de 2,6 e 2,7 mM proporcionaram aumento na taxa de assimilação de CO2 e condutância estomática, respectivamente, das plantas de algodão. A aplicação foliar de ácido salicílico não amenizou os efeitos do estresse salino sobre as trocas gasosas, a síntese de pigmentos fotossintéticos e os componentes de produção do algodoeiro.