Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 91(3): 033302, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32260010

RESUMEN

Space plasma instruments often rely on ultrathin carbon foils for incident ion detection, time-of-flight (TOF) mass spectrometry, and ionization of energetic neutral atoms. Angular scattering and energy loss of ions or neutral atoms in the foil can degrade instrument performance, including sensitivity and mass resolution; thus, there is an ongoing effort to manufacture thinner foils. Using new 3-layer graphene foils manufactured at the Los Alamos National Laboratory, we demonstrate that these are the thinnest foils reported to date and discuss future testing required for application in space instrumentation. We characterize the angular scattering distribution for 3-30 keV protons through the foils, which is used as a proxy for the foil thickness. We show that these foils are ∼2.5-4.5 times thinner than the state-of-the-art carbon foils and ∼1.6 times thinner than other graphene foils described in the literature. We find that the inverse relationship between angular scattering and energy no longer holds, reaffirming that this may indicate a new domain of beam-foil interactions for ultrathin (few-layer) graphene foils.

2.
J Geophys Res Space Phys ; 122(9): 9207-9227, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29214118

RESUMEN

The two full precessions in local time completed by the Van Allen Probes enable global specification of the near-equatorial inner magnetosphere plasma environment. Observations by the Helium-Oxygen-Proton-Electron (HOPE) mass spectrometers provide detailed insight into the global spatial distribution of electrons, H+, He+, and O+. Near-equatorial omnidirectional fluxes and abundance ratios at energies 0.1-30 keV are presented for 2 ≤ L ≤ 6 as a function of L shell, magnetic local time (MLT), and geomagnetic activity. We present a new tool built on the UBK modeling technique for classifying plasma sheet particle access to the inner magnetosphere. This new tool generates access maps for particles of constant energy for more direct comparison with in situ measurements, rather than the traditional constant µ presentation typically associated with UBK. We present for the first time inner magnetosphere abundances of O+ flux relative to H+ flux as a function of Kp, L, MLT, and energy. At L = 6, the O+/H+ ratio increases with increasing Kp, consistent with previous results. However, at L < 5 the O+/H+ ratio generally decreases with increasing Kp. We identify a new "afternoon bulge" plasma population enriched in 10 keV O+ and superenriched in 10 keV He+ that is present during quiet/moderate geomagnetic activity (Kp < 5) at ~1100-2000 MLT and L shell 2-4. Drift path modeling results are consistent with the narrow energy and approximate MLT location of this enhancement, but the underlying physics describing its formation, structure, and depletion during higher geomagnetic activity are currently not understood.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...