Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.103
Filtrar
1.
Food Chem ; 460(Pt 2): 140677, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39102764

RESUMEN

Germination represents a vital bioprocess characterized by numerous biochemical transformations that significantly influence the nutritional characteristics of rice. The mobilization of starch and lipids during germination plays a pivotal role in altering the dietary profile of rice, thus potentially addressing the nutritional requirements of populations heavily reliant on rice as a staple food. To explore this potential, a comprehensive analysis encompassing lipidomics and starch composition was conducted on a diverse collection of pigmented rice sprouts. High-resolution mass spectrometry unveiled substantial shifts in the lipidome of pigmented rice sprouts, showcasing a notable enrichment in carotenoids and unsaturated triglycerides, with potential human health benefits. Notably, purple rice sprouts exhibited heightened levels of alpha- and beta-carotene. Analysis of starch composition revealed slight changes in amylose and amylopectin content; however, a consistent increase in digestible carbohydrates was observed across all rice varieties. Germination also led to a reduction in resistant starch content, with purple rice sprouts demonstrating a pronounced two-fold decrease (p < 0.05). These changes were corroborated by a 1.33% decrease in gelatinization enthalpy and a 0.40% reduction in the melting of the amylose-lipid complex. Furthermore, pasting property analysis indicated a substantial 42% decrease in the complexation index post-germination. We posit that the insights garnered from this study hold significant promise for the development of novel products enriched with health-promoting lipids and characterized by unique flour properties.

2.
Trends Plant Sci ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089907

RESUMEN

In a recent study, Zeng et al. uncovered 3ß-tigloyloxytropane synthase (TS) in Atropa belladonna, characterizing its mitochondrial localization and substrate specificity. The discovery of this enzyme opens up new bioengineering possibilities for tropane alkaloids (TAs), enhancing the potential for sustainable agriculture and expanding our knowledge of TA biosynthesis.

3.
Plant Physiol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106412

RESUMEN

Ascorbate is a major plant metabolite that plays crucial roles in various processes, from reactive oxygen scavenging to epigenetic regulation. However, to what extent and how ascorbate modulates metabolism is largely unknown. We investigated the consequences of chloroplastic and total cellular ascorbate-deficiencies by studying chloroplastic ascorbate-transporter mutant lines lacking PHOSPHATE TRANSPORTER 4; 4 (PHT4; 4) , and the ascorbate-deficient vtc2-4 mutant of Arabidopsis (Arabidopsis thaliana). Under regular growth conditions, both ascorbate deficiencies caused minor alterations in photosynthesis, with no apparent signs of oxidative damage. In contrast, metabolomics analysis revealed global and largely overlapping alterations in the metabolome profiles of both ascorbate-deficiency mutants, suggesting that chloroplastic ascorbate modulates plant metabolism. We observed significant alterations in amino acid metabolism, particularly in arginine metabolism, activation of nucleotide salvage pathways, and changes in secondary metabolism. In addition, proteome-wide analysis of thermostability revealed that ascorbate may interact with enzymes involved in arginine metabolism, the Calvin-Benson cycle, and several photosynthetic electron transport components. Overall, our results suggest that, independently of oxidative stress, chloroplastic ascorbate modulates the activity of diverse metabolic pathways in vascular plants and may act as an internal metabolic signal.

4.
Nat Commun ; 15(1): 6663, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107344

RESUMEN

A wide variety of metabolic gene clusters exist in eukaryotic genomes, but fatty acid metabolic gene clusters have not been discovered. Here, combining with metabolic and phenotypic genome-wide association studies, we identify a major locus containing a six-gene fatty acid metabolic gene cluster on chromosome 3 (FGC3) that controls the cutin monomer hydroxymonoacylglycerols (HMGs) contents and rice yield, possibly through variation in the transcription of FGC3 members. We show that HMGs are sequentially synthesized in the endoplasmic reticulum by OsFAR2, OsKCS11, OsGPAT6, OsCYP704B2 and subsequently transported to the apoplast by OsABCG22 and OsLTPL82. Mutation of FGC3 members reduces HMGs, leading to defective male reproductive development and a significant decrease in yield. OsMADS6 and OsMADS17 directly regulate FGC3 and thus influence male reproduction and yield. FGC3 is conserved in Poaceae and likely formed prior to the divergence of Pharus latifolius. The eukaryotic fatty acid and plant primary metabolic gene cluster we identified show a significant impact on the origin and evolution of Poaceae and has potential for application in hybrid crop breeding.


Asunto(s)
Ácidos Grasos , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidad/genética , Estudio de Asociación del Genoma Completo , Genes de Plantas , Mutación
5.
Proc Natl Acad Sci U S A ; 121(36): e2410598121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190344

RESUMEN

To counter the rising incidence of diabetes and to meet the daily protein needs, we created low glycemic index (GI) rice varieties with protein content (PC) surpassing 14%. In the development of recombinant inbred lines using Samba Mahsuri and IR36 amylose extender (IR36ae) as parental lines, we identified quantitative trait loci and genes associated with low GI, high amylose content (AC), and high PC. By integrating genetic techniques with classification models, this comprehensive approach identified candidate genes on chromosome 2 (qGI2.1/qAC2.1 spanning the region from 18.62 Mb to 19.95 Mb), exerting influence on low GI and high amylose. Notably, the phenotypic variant with high value was associated with the recessive allele of the starch branching enzyme 2b (sbeIIb). The genome-edited sbeIIb line confirmed low GI phenotype in milled rice grains. Further, combinations of alleles created by the highly significant SNPs from the targeted associations and epistatically interacting genes showed ultralow GI phenotypes with high amylose and high protein. Metabolomics analysis of rice with varying AC, PC, and GI revealed that the superior lines of high AC and PC, and low GI were preferentially enriched in glycolytic and amino acid metabolisms, whereas the inferior lines of low AC and PC and high GI were enriched with fatty acid metabolism. The high amylose high protein recombinant inbred line (HAHP_101) was enriched in essential amino acids like lysine. Such lines may be highly relevant for food product development to address diabetes and malnutrition.


Asunto(s)
Amilosa , Índice Glucémico , Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/metabolismo , Amilosa/metabolismo , Amilosa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Genoma de Planta , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Fenotipo , Genómica/métodos , Multiómica
6.
Sci Data ; 11(1): 841, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097666

RESUMEN

In plants due to their sessile nature, secondary metabolites are important components against different abiotic and biotic stress, such as extended darkness. For this reason, the variation of secondary metabolite content of the Arabidopsis thaliana HapMap natural population following 0-and 6-d darkness treatment were detected and the raw data of different accessions at two timepoints were deposited in the Zenodo database. Moreover, the annotated secondary metabolites of these samples are presented in this data descriptor, which we believe will be a usefully re-usable resource for future integrative analysis with dark-treated transcripts, proteins or other phenotypic data in order to comprehensively illustrate the multiomic landscape of Arabidopsis in response to the stresses exerted by extended darkness.


Asunto(s)
Arabidopsis , Oscuridad , Metabolismo Secundario , Arabidopsis/genética , Arabidopsis/metabolismo , Estrés Fisiológico
7.
Plant J ; 119(5): 2168-2180, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38990529

RESUMEN

Mass spectrometry imaging (MSI) has become increasingly popular in plant science due to its ability to characterize complex chemical, spatial, and temporal aspects of plant metabolism. Over the past decade, as the emerging and unique features of various MSI techniques have continued to support new discoveries in studies of plant metabolism closely associated with various aspects of plant function and physiology, spatial metabolomics based on MSI techniques has positioned it at the forefront of plant metabolic studies, providing the opportunity for far higher resolution than was previously available. Despite these efforts, profound challenges at the levels of spatial resolution, sensitivity, quantitative ability, chemical confidence, isomer discrimination, and spatial multi-omics integration, undoubtedly remain. In this Perspective, we provide a contemporary overview of the emergent MSI techniques widely used in the plant sciences, with particular emphasis on recent advances in methodological breakthroughs. Having established the detailed context of MSI, we outline both the golden opportunities and key challenges currently facing plant metabolomics, presenting our vision as to how the enormous potential of MSI technologies will contribute to progress in plant science in the coming years.


Asunto(s)
Espectrometría de Masas , Metabolómica , Plantas , Metabolómica/métodos , Plantas/metabolismo , Espectrometría de Masas/métodos
8.
Plant J ; 119(4): 2045-2062, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38961707

RESUMEN

Cassava is a crucial staple crop for smallholder farmers in tropical Asia and Sub-Saharan Africa. Although high yield remains the top priority for farmers, the significance of nutritional values has increased in cassava breeding programs. A notable negative correlation between provitamin A and starch accumulation poses a significant challenge for breeding efforts. The negative correlation between starch and carotenoid levels in conventional and genetically modified cassava plants implies the absence of a direct genomic connection between the two traits. The competition among various carbon pathways seems to account for this relationship. In this study, we conducted a thorough analysis of 49 African cassava genotypes with varying levels of starch and provitamin A. Our goal was to identify factors contributing to differential starch accumulation. Considering carotenoid levels as a confounding factor in starch production, we found that yellow- and white-fleshed storage roots did not differ significantly in most measured components of starch or de novo fatty acid biosynthesis. However, genes and metabolites associated with myo-inositol synthesis and cell wall polymer production were substantially enriched in high provitamin A genotypes. These results indicate that yellow-fleshed cultivars, in comparison to their white-fleshed counterparts, direct more carbon toward the synthesis of raffinose and cell wall components. This finding is underlined by a significant rise in cell wall components measured within the 20 most contrasting genotypes for carotenoid levels. Our findings enhance the comprehension of the biosynthesis of starch and carotenoids in the storage roots of cassava.


Asunto(s)
Carbono , Pared Celular , Inositol , Manihot , Raíces de Plantas , Rafinosa , Almidón , Almidón/metabolismo , Manihot/genética , Manihot/metabolismo , Carbono/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Pared Celular/metabolismo , Inositol/metabolismo , Rafinosa/metabolismo , Genotipo , Carotenoides/metabolismo
9.
Methods Mol Biol ; 2827: 405-416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985285

RESUMEN

The engineering of plant cell cultures to produce high-value natural products is suggested to be a safe, low-cost, and environmentally friendly route to produce a wide range of chemicals. Given that the expression of heterologous biosynthetic pathways in plant tissue culture is limited by a lack of detailed protocols, the biosynthesis of high-value metabolites in plant cell culture is constrained compared with that in microbes. However, both Arabidopsis thaliana and Nicotiana benthamiana can be efficiently transformed with multigene constructs to produce high-value natural products in stable plant cell cultures. This chapter provides a detailed protocol as to how to engineer the plant cell culture as bio-factories for metabolite biosynthesis.


Asunto(s)
Arabidopsis , Productos Biológicos , Nicotiana , Productos Biológicos/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Técnicas de Cultivo de Tejidos/métodos , Células Vegetales/metabolismo , Ingeniería Metabólica/métodos , Plantas Modificadas Genéticamente/genética , Metaboloma , Vías Biosintéticas , Metabolómica/métodos , Técnicas de Cultivo de Célula/métodos
10.
Trends Plant Sci ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39054227

RESUMEN

Given that crop yields are strongly limited by nitrogen, engineering crop plants with self-nitrogen-fertilization capacity holds great promise for sustainable agriculture. Recently, a nitrogen-fixing organelle has been characterized in the unicellular marine microalgae Braarudosphaera bigelowii. Engineering a nitrogen-fixing organelle into the non-nitrogen-fixing crops could benefit both environmental sustainability and global food security.

11.
Plant Cell ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842420

RESUMEN

Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted towards different metabolic fates, including cyoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phospho-glycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.

12.
Plant J ; 119(4): 2096-2115, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38872506

RESUMEN

Tea, one of the most widely consumed beverages globally, exhibits remarkable genomic diversity in its underlying flavour and health-related compounds. In this study, we present the construction and analysis of a tea pangenome comprising a total of 11 genomes, with a focus on three newly sequenced genomes comprising the purple-leaved assamica cultivar "Zijuan", the temperature-sensitive sinensis cultivar "Anjibaicha" and the wild accession "L618" whose assemblies exhibited excellent quality scores as they profited from latest sequencing technologies. Our analysis incorporates a detailed investigation of transposon complement across the tea pangenome, revealing shared patterns of transposon distribution among the studied genomes and improved transposon resolution with long read technologies, as shown by long terminal repeat (LTR) Assembly Index analysis. Furthermore, our study encompasses a gene-centric exploration of the pangenome, exploring the genomic landscape of the catechin pathway with our study, providing insights on copy number alterations and gene-centric variants, especially for Anthocyanidin synthases. We constructed a gene-centric pangenome by structurally and functionally annotating all available genomes using an identical pipeline, which both increased gene completeness and allowed for a high functional annotation rate. This improved and consistently annotated gene set will allow for a better comparison between tea genomes. We used this improved pangenome to capture the core and dispensable gene repertoire, elucidating the functional diversity present within the tea species. This pangenome resource might serve as a valuable resource for understanding the fundamental genetic basis of traits such as flavour, stress tolerance, and disease resistance, with implications for tea breeding programmes.


Asunto(s)
Camellia sinensis , Elementos Transponibles de ADN , Genoma de Planta , Camellia sinensis/genética , Genoma de Planta/genética , Elementos Transponibles de ADN/genética , Variación Genética , Té/genética , Genómica , Catequina/genética
13.
Plant J ; 119(4): 1920-1936, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924321

RESUMEN

Photorespiratory serine hydroxymethyltransferases (SHMTs) are important enzymes of cellular one-carbon metabolism. In this study, we investigated the potential role of SHMT6 in Arabidopsis thaliana. We found that SHMT6 is localized in the nucleus and expressed in different tissues during development. Interestingly SHMT6 is inducible in response to avirulent, virulent Pseudomonas syringae and to Fusarium oxysporum infection. Overexpression of SHMT6 leads to larger flowers, siliques, seeds, roots, and consequently an enhanced overall biomass. This enhanced growth was accompanied by increased stomatal conductance and photosynthetic capacity as well as ATP, protein, and chlorophyll levels. By contrast, a shmt6 knockout mutant displayed reduced growth. When challenged with Pseudomonas syringae pv tomato (Pst) DC3000 expressing AvrRpm1, SHMT6 overexpression lines displayed a clear hypersensitive response which was characterized by enhanced electrolyte leakage and reduced bacterial growth. In response to virulent Pst DC3000, the shmt6 mutant developed severe disease symptoms and becomes very susceptible, whereas SHMT6 overexpression lines showed enhanced resistance with increased expression of defense pathway associated genes. In response to Fusarium oxysporum, overexpression lines showed a reduction in symptoms. Moreover, SHMT6 overexpression lead to enhanced production of ethylene and lignin, which are important components of the defense response. Collectively, our data revealed that SHMT6 plays an important role in development and defense against pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Etilenos , Fusarium , Glicina Hidroximetiltransferasa , Lignina , Enfermedades de las Plantas , Pseudomonas syringae , Arabidopsis/genética , Arabidopsis/microbiología , Etilenos/metabolismo , Lignina/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pseudomonas syringae/fisiología , Fusarium/fisiología , Fusarium/patogenicidad , Enfermedades de las Plantas/microbiología , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente
14.
Mol Plant ; 17(7): 1005-1018, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38877700

RESUMEN

Doubled haploid (DH) technology and synthetic apomixis approaches can considerably shorten breeding cycles and enhance breeding efficiency. Compared with traditional breeding methods, DH technology offers the advantage of rapidly generating inbred lines, while synthetic apomixis can effectively fix hybrid vigor. In this review, we focus on (i) recent advances in identifying and characterizing genes responsible for haploid induction (HI), (ii) the molecular mechanisms of HI, (iii) spontaneous haploid genome doubling, and (iv) crop synthetic apomixis. We also discuss the challenges and potential solutions for future crop breeding programs utilizing DH technology and synthetic apomixis. Finally, we provide our perspectives about how to integrate DH and synthetic apomixis for precision breeding and de novo domestication.


Asunto(s)
Productos Agrícolas , Haploidia , Fitomejoramiento , Fitomejoramiento/métodos , Productos Agrícolas/genética , Apomixis/genética
15.
Plant Physiol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775728

RESUMEN

Cassava (Manihot esculenta) is a deciduous woody perennial shrub that stores large amounts of carbon and water in its storage roots. Previous studies have shown that assimilate unloading into storage roots happens symplasmically once secondary anatomy is established. However, mechanisms controlling phloem loading and overall carbon partitioning to different cassava tissues remain unclear. Here, we used a combination of histological, transcriptional, and biochemical analyses on different cassava tissues and at different timepoints to better understand source-sink carbon allocation. We found that cassava likely utilizes a predominantly passive symplasmic phloem loading strategy, indicated by the lack of expression of genes coding for key players of sucrose transport, the existence of branched plasmodesmata in the companion cell/bundle sheath interface of minor leaf veins, and very high leaf sucrose concentrations. Furthermore, we showed that tissue-specific changes in anatomy and non-structural carbohydrate (NSC) contents are associated with tissue-specific modification in gene expression for sucrose cleavage/synthesis, as well as subcellular compartmentalization of sugars. Overall, our data suggest that carbon allocation during storage root filling is mostly facilitated symplasmically and is likely mostly regulated by local tissue demand and subcellular compartmentalization.

16.
Hortic Res ; 11(5): uhae060, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716228

RESUMEN

High levels of free amino acids (AAs) in tea leaves are crucial for tea flavor and health function; however, the dynamic AA biosynthesis, transport, and turnover in tea plants remain elusive. Here we dissected whole tea plants for these dynamics by assessing AA profiles and transcriptomes of metabolic pathway genes in tea roots, stems, and leaves and revealing their distinctive features with regard to AA synthesis, transport, and degradation/recycling. Nitrogen assimilation dominated in the roots wherein glutamine (Gln), theanine, and arginine (Arg) were actively synthesized. Arg was transported into trunk roots and stems, together with Glu, Gln, and theanine as the major AAs in the xylem sap for long-distance root-to-leaf transport. Transcriptome analysis revealed that genes involved in Arg synthesis were highly expressed in roots, but those for Arg transport and degradation were highly expressed in stems and young leaves, respectively. CsGSIa transcripts were found in root meristem cells, root, stem and leaf vascular tissues, and leaf mesophyll where it appeared to participate in AA synthesis, transport, and recycling. Overexpression of CsGSIa in tea transgenic hairy roots and knockdown of CsGSIa in transgenic hairy roots and tea leaves produced higher and lower Gln and theanine than wild-type roots and leaves, respectively. This study provides comprehensive and new insights into AA metabolism and transport in the whole tea plant.

17.
Nat Genet ; 56(6): 1042-1044, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778241
18.
Plant J ; 119(3): 1327-1335, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38804053

RESUMEN

Ear length (EL) is a key trait that greatly contributes to yield in maize. Although dozens of EL quantitative trait loci have been mapped, very few causal genes have been cloned, and the molecular mechanisms remain largely unknown. Our previous study showed that YIGE1 is involved in sugar and auxin pathways to regulate ear inflorescence meristem (IM) development and thus affects EL in maize. Here, we reveal that YIGE2, the paralog of YIGE1, regulates maize ear development and EL through auxin pathway. Knockout of YIGE2 causes a significant decrease of auxin level, IM length, floret number, EL, and grain yield. yige1 yige2 double mutants had even shorter IM and ears implying that these two genes redundantly regulate IM development and EL. The genes controlling auxin levels are differential expressed in yige1 yige2 double mutants, leading to lower auxin level. These results elucidated the critical role of YIGE2 and the redundancy between YIGE2 and YIGE1 in maize ear development, providing a new genetic resource for maize yield improvement.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Sitios de Carácter Cuantitativo/genética , Mutación
19.
Plant Biotechnol J ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38817148

RESUMEN

Cadmium (Cd) is one of the most toxic heavy metals faced by plants and, additionally, via the food chain, threatens human health. It is principally dispersed through agro-ecosystems via anthropogenic activities and geogenic sources. Given its high mobility and persistence, Cd, although not required, can be readily assimilated by plants thereby posing a threat to plant growth and productivity as well as animal and human health. Thus, breeding crop plants in which the edible parts contain low to zero Cd as safe food stuffs and harvesting shoots of high Cd-containing plants as a route for decontaminating soils are vital strategies to cope with this problem. Recently, multiomics approaches have been employed to considerably enhance our understanding of the mechanisms underlying (i) Cd toxicity, (ii) Cd accumulation, (iii) Cd detoxification and (iv) Cd acquisition tolerance in plants. This information can be deployed in the development of the biotechnological tools for developing plants with modulated Cd tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. The aim of this review is to provide a current update about the mechanisms involved in Cd uptake by plants and the recent developments in the area of multiomics approach in terms of Cd stress responses, as well as in the development of Cd tolerant and low Cd accumulating crops.

20.
aBIOTECH ; 5(1): 29-45, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38576434

RESUMEN

Bitter melon fruit is susceptible to yellowing, softening, and rotting under room-temperature storage conditions, resulting in reduced commercial value. Nitric oxide (NO) is an important signaling molecule and plays a crucial role in regulating the fruit postharvest quality. In this study, we investigated the effects of NO treatment on changes in sensory and firmness of bitter melon fruit during postharvest storage. Moreover, transcriptomic, metabolomic, and proteomic analyses were performed to elucidate the regulatory mechanisms through which NO treatment delays the ripening and senescence of bitter melon fruit. Our results show that differentially expressed genes (DEGs) were involved in fruit texture (CSLE, ß-Gal, and PME), plant hormone signal transduction (ACS, JAR4, and AUX28), and fruit flavor and aroma (SUS2, LOX, and GDH2). In addition, proteins differentially abundant were associated with fruit texture (PLY, PME, and PGA) and plant hormone signal transduction (PBL15, JAR1, and PYL9). Moreover, NO significantly increased the abundance of key enzymes involved in the phenylpropanoid biosynthetic pathway, thus enhancing the disease resistance and alleviating softening of bitter melon fruit. Finally, differential metabolites mainly included phenolic acids, terpenoids, and flavonoids. These results provide a theoretical basis for further studies on the physiological changes associated with postharvest ripening and senescence of bitter melon fruit. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00110-y.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...