Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(32): 21395-21406, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078376

RESUMEN

The bonding structures of CO3Li3+ and CS3Li3+ are studied by means of oriented quasi-atomic orbitals (QUAOs) to assess the possibility of these molecules being planar hexacoordinated carbon (phC) systems. CH3Li and CO32- are employed as reference molecules. It is found that the introduction of Li+ ions into the molecular environment of carbonate has a greater effect on the orbital structure of the O atoms than it does on the C atom. Partial charges computed from QUAO populations imply repulsion between the positively charged C and Li atoms in CO3Li3+. Upon the transition from CO3Li3+ to CS3Li3+, the analysis reveals that the substitution of O atoms by S atoms inverts the polarity of the carbon-chalcogen σ bond. This is linked to the difference in s- and p-fractions of the QUAOs of C and S, as element electronegativities do not explain the observed polarity of the CSσ bond. Partial charges indicate that the larger electron population on the C atom in CS3Li3+ makes C-Li attraction possible. Upon comparison with the C-Li bond in methyllithium, it is found that the C-Li covalent interactions in CO3Li3+ and CS3Li3+ have about 14% and 6% of the strength of the C-Li covalent interaction in CH3Li, respectively. Consequently, it is concluded that only CS3Li3+ may be considered to be a phC system.

2.
Phys Chem Chem Phys ; 26(32): 21407-21418, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39081231

RESUMEN

The bonding structures of infinitene, the Chemical and Engineering News 2021 Molecule of the Year, is studied by means of oriented quasi-atomic orbitals (QUAOs) to assess the degree of aromaticity within the molecule. It is found that the angularity introduced into infinitene when it takes on the helical shape of the infinity symbol has a profound effect on bond order, delocalization of bonding interactions, and the aromatic character of the system. In kekulene, a planar isomer of infinitene, the bonding analysis shows fluctuations of pocketed delocalization of bonding interactions in π-sextets associated with Clar's rule. Conversely, much smaller fluctuations are observed between the adjacent rings of infinitene. The observations drawn from the quasi-atomic bonding analysis support the idea that there is aromatic character across the entire infinitene molecule, not just localized around individual rings as in kekulene.

3.
J Chem Theory Comput ; 20(13): 5487-5496, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38916956

RESUMEN

The SF-ORMAS-PDFT (spin-flip occupation restricted multiple active space-pair density functional theory) approach combines the SF-ORMAS-CI method with the MC-PDFT method to treat both static and dynamic correlation in multiconfigurational systems. The static correlation description is generated via the spin-flip approach, which uses a high-spin single reference determinant to treat excited states with multiconfigurational characters. The on-top pair density functional theory uses a translation scheme applied to GGA density functionals. The SF-ORMAS-PDFT scheme has also been combined with virtual valence orbitals (VVO), a well-defined subspace of the virtual molecular orbitals, giving rise to significant speedups relative to the use of the full virtual space. The accuracy of the SF-ORMAS-PDFT method is tested by calculating 65 vertical excitation energies of 12 small- and medium-sized organic molecules. The SF-ORMAS-PDFT vertical excitation energies calculated with VVOs are comparable to those calculated with the full virtual space. The SF-ORMAS-PDFT/6-31G(d) level of theory predicts the rotational barrier of ethylene to be 65.5 and 65.9 kcal/mol, with full virtual space and VVOs, respectively. These predicted barrier heights compare well with the experimental value of 65 kcal/mol.

4.
J Chem Theory Comput ; 19(20): 7031-7055, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37793073

RESUMEN

The primary focus of GAMESS over the last 5 years has been the development of new high-performance codes that are able to take effective and efficient advantage of the most advanced computer architectures, both CPU and accelerators. These efforts include employing density fitting and fragmentation methods to reduce the high scaling of well-correlated (e.g., coupled-cluster) methods as well as developing novel codes that can take optimal advantage of graphical processing units and other modern accelerators. Because accurate wave functions can be very complex, an important new functionality in GAMESS is the quasi-atomic orbital analysis, an unbiased approach to the understanding of covalent bonds embedded in the wave function. Best practices for the maintenance and distribution of GAMESS are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA