Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Cancer ; 131(5): E681-92, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22119929

RESUMEN

Several reports have shown that secreted clusterin (sCLU) plays multiple roles in tumor development and metastasis. Here, we report on a 12-mer sCLU binding peptide (designated P3378) that was identified by screening a phage-display peptide library against purified human sCLU. Differential resonance perturbation nuclear magnetic resonance using P3378 and a scrambled control peptide (designated P3378R) confirmed the P3378-sCLU interaction and demonstrated that it was sequence specific. P3378 and P3378R peptides were conjugated to an Alexa680 near infrared fluorophore (NIRF) and assessed for their tumor homing abilities in in vivo time-domain fluorescence optical imaging experiments using living 4T1 tumor bearing BALB/c mice. When injected in separate animals, both peptides accumulated at the tumor site, however the NIRF-labeled P3378 peptide was retained for a significant longer period of time than the P3378R peptide. Similar observations were made after simultaneously injecting the same tumor-bearing animal with a peptide mixture of P3378 DyLight (DL)680 and the P3378R-DL800. Coinjection of P3378-DL680 with excess unlabeled P3378 blocked tumor accumulation of fluorescent signal while excess P3378R control peptide did not confirming the sequence specificity of the tumor accumulation. Finally, ex vivo fluorescence microscopy of these tumors confirmed the presence of P3378-DL680 in the tumor and its colocalization with CLU. These results confirm the tumor targeting specificity of the P3378 CLU-binding peptide and suggest its usefulness for the in vivo monitoring of solid tumors secreting detectable levels of CLU.


Asunto(s)
Clusterina/metabolismo , Neoplasias Mamarias Animales/diagnóstico , Neoplasias Mamarias Animales/metabolismo , Microscopía Fluorescente , Imagen Molecular , Fragmentos de Péptidos/metabolismo , Espectroscopía Infrarroja Corta , Animales , Western Blotting , Femenino , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Sondas Moleculares , Biblioteca de Péptidos , Células Tumorales Cultivadas
3.
Biochemistry ; 43(5): 1315-22, 2004 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-14756568

RESUMEN

We have investigated the binding of bovine pancreatic trypsin inhibitor (BPTI) to bovine trypsinogen by combining ultrasonic velocimetry, high precision densimetry, and fluorescence spectroscopy. We report the changes in volume, adiabatic compressibility, van't Hoff enthalpy, entropy, and free energy that accompany the association of the two proteins at 25 degrees C and pH 8.0. We have used the measured changes in volume and compressibility in conjunction with available structural data to characterize the binding-induced changes in the hydration properties and intrinsic packing of the two proteins. Our estimate reveals that 110 +/- 40 water molecules become released to the bulk from the hydration shells of BPTI and trypsinogen. Furthermore, we find that the intrinsic coefficient of adiabatic compressibility of the two proteins decreases by 14 +/- 2%, which is suggestive of the binding-induced rigidification of the proteins' interior. BPTI-trypsinogen association is an entropy-driven event which proceeds with an unfavorable change in enthalpy. The favorable change in entropy results from partial compensation between two predominant terms. Namely, a large favorable change in hydrational entropy slightly prevails over a close in magnitude but opposite in sign change in configurational entropy. The reduction in configurational entropy and, consequently, protein dynamics is consistent with the observed decrease in intrinsic compressibility. In general, results of this work emphasize the vital role that water plays in modulating protein recognition events.


Asunto(s)
Aprotinina/química , Termodinámica , Tripsinógeno/química , Animales , Aprotinina/metabolismo , Tampones (Química) , Bovinos , Densitometría , Entropía , Modelos Químicos , Unión Proteica , Conformación Proteica , Espectrometría de Fluorescencia , Tripsinógeno/antagonistas & inhibidores , Ultrasonido , Agua/química
4.
FEBS Lett ; 554(3): 351-6, 2003 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-14623093

RESUMEN

The binding of D-glucose to hexokinase PII at 25 degrees C and pH 8.7 has been investigated by a combination of ultrasonic velocimetry, high precision densimetry, and fluorescence spectroscopy. The binding of glucose to the enzyme results in significant dehydration of the two interacting molecules, while the intrinsic coefficient of adiabatic compressibility of hexokinase slightly decreases. Glucose-hexokinase association is an entropy-driven process. The favorable change in entropy results from compensation between two large contributions. The binding-induced increase in hydrational entropy slightly prevails over the decrease in the configurational entropy of the enzyme. Taken together, our results emphasize the crucial role of water in modulating the energetics of protein recognition.


Asunto(s)
Glucosa/metabolismo , Hexoquinasa/metabolismo , Deshidratación , Glucosa/química , Hexoquinasa/química , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica , Ultrasonido , Agua/química , Levaduras/enzimología
5.
Biochemistry ; 42(29): 8671-8, 2003 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-12873126

RESUMEN

We have measured the transition temperatures, T(M), and van't Hoff enthalpies, DeltaH(M), of the thermally induced native-to-unfolded (N-to-U) and molten globule-to-unfolded (MG-to-U) transitions of cytochrome c at pressures between 50 and 2200 bar. We have used the pressure dependence of T(M) to evaluate the changes in volume, Delta(v), accompanying each protein transition event as a function of temperature and pressure. From analysis of the temperature and pressure dependences of Delta(v), we have additionally calculated the changes in expansibility, Delta(e), and isothermal compressibility, Delta(k)(T), associated with the thermally induced conformational transitions of cytochrome c. Specifically, if extrapolated to 25 degrees C, the native-to-unfolded (N-to-U) transition is accompanied by changes in volume, Delta(v), expansibility, Delta(e), and isothermal compressibility, Delta(k)(T), of -(5 +/- 3) x 10(-3) cm(3) g(-1), (1.8 +/- 0.3) x 10(-4) cm(3) g(-1) K(-1), and approximately 0 cm(3) g(-1) bar(-1), respectively. The molten globule-to-unfolded (MG-to-U) transition is accompanied by changes in volume, Delta(v), and isothermal compressibility, Delta(k)(T), of -(2.9 +/- 0.3) x 10(-3) cm(3) g(-1) at 40 degrees C and -(1.9 +/- 0.3) x 10(-6) cm(3) g(-1) bar(-1) at 35 degrees C, respectively. By comparing the volumetric properties of the N-to-U and N-to-MG transitions of cytochrome c, we have estimated the properties of the native-to-molten globule (N-to-MG) transition. For the latter transition, the changes in volume, Delta(v), and isothermal compressibility, Delta(k)(T), are approximately 0 cm(3) g(-1) at 40 degrees C and 1.9 cm(3) g(-1) bar(-1) at 35 degrees C, respectively. Our estimate for the change in expansibility, Delta(e), upon the N-to-MG is negative and equal to -(5 +/- 3) x 10(-4) cm(3) g(-1) K(-1). This finding contrasts with the results of previous studies all of which report positive changes in expansibility associated with protein denaturation. In general, our volumetric data permit us to assess the combined effect of temperature and pressure on the stability of various conformational states of cytochrome c.


Asunto(s)
Grupo Citocromo c/química , Animales , Dicroismo Circular , Caballos , Concentración de Iones de Hidrógeno , Miocardio/metabolismo , Presión , Conformación Proteica , Pliegue de Proteína , Análisis Espectral , Temperatura , Termodinámica
6.
Biophys Chem ; 104(2): 489-99, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12878316

RESUMEN

We present a simple model to describe volume changes accompanying protein folding and binding events. The model enables one to resolve the changes in volume accompanying conformational transitions of proteins as well as association of proteins with other molecules in terms of the intrinsic, thermal and interaction (hydration) contributions. The thermal contribution to protein volume results from thermally activated mutual vibrational motions of contacting solute and solvent molecules. Our calculations suggest that near zero volume changes accompanying protein folding and binding events reflect compensation between significant changes in the intrinsic, thermal and interaction terms. We have quantitatively estimated these terms as a function of the protein's molecular weight and degree of its unfolding. Results described in this work lay foundation for more reliable and physically justified interpretations of volumetric data on protein folding and binding events. We also discuss potential ways of extending applications of our model to analyzing other macromolecular systems and events, including drug-DNA and protein-DNA interactions and helix-to-helix and helix-to-coil transitions of nucleic acids.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Animales , Peso Molecular , Unión Proteica , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Solventes/química , Termodinámica
7.
J Mol Biol ; 326(4): 1271-88, 2003 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-12589768

RESUMEN

We have used ultrasonic velocimetry, high-precision densimetry, and fluorescence spectroscopy, in conjunction with isothermal titration and differential scanning calorimetry, to characterize the binding of turkey ovomucoid third domain (OMTKY3) to alpha-chymotrypsin. We report the changes in volume and adiabatic compressibility that accompany the association of these proteins at 25 degrees C and pH 4.5. In addition, we report the changes in free energy, enthalpy, entropy, and heat capacity upon the binding of OMTKY3 to alpha-chymotrypsin over a temperature range of 20-40 degrees C. Our volume and compressibility data, in conjunction with X-ray crytsallographic data on the OMTKY3-alpha-chymotrypsin complex, suggest that 454(+/-22) water molecules are released to the bulk state upon the binding of OMTKY3 to alpha-chymotrypsin. Furthermore, these volumetric data suggest that the intrinsic compressibility of the two proteins decreases by 7%. At each temperature studied, OMTKY3 association with alpha-chymotrypsin is entropy driven with a large, unfavorable enthalpy contribution. The observed entropy of the binding reflects interplay between two very large favorable and unfavorable terms. The favorable term reflects an increase in the hydrational entropy resulting from release to the bulk of 454 water molecules. The unfavorable term is related to a decrease in the configurational entropy and, consequently, a decrease in the conformational dynamics of the two proteins. In general, we discuss the relationship between macroscopic and microscopic properties, in particular, identifying and quantifying the role of hydration in determining the thermodynamics of protein recognition as reflected in volumetric and calorimetric parameters.


Asunto(s)
Quimotripsina/metabolismo , Ovomucina/química , Ovomucina/metabolismo , Pavos , Animales , Calorimetría , Dimerización , Polarización de Fluorescencia , Matemática , Ovomucina/genética , Estructura Terciaria de Proteína , Termodinámica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA