Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Ear Hear ; 44(4): 740-750, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36631948

RESUMEN

OBJECTIVES: This study compared the measurement of the acoustic stapedius reflex threshold (ART) obtained using a traditional method with that obtained using an automated adaptive wideband (AAW) method. Participants included three groups of adults with normal hearing (NH), mild sensorineural hearing loss (SNHL), or moderate SNHL. The purpose of the study was to compare ARTs for the three groups and to determine which method had the best performance in detecting SNHL. DESIGN: Ipsilateral and contralateral ARTs were obtained using 0.5, 1, and 2 kHz tonal activators, and broadband noise (BBN) activators on a traditional admittance system (Clinical) at tympanometric peak pressures (TPP) and on an experimental wideband system using an AAW method at both ambient pressure and TPP. ART data previously reported for 39 NH adults with a mean age of 47.7 years were compared with data for 25 participants with mild SNHL with a mean age of 63.8 years, and 20 participants with moderate SNHL with a mean age of 65.7 years. Differences in ARTs between the normal-hearing and SNHL groups for the three methods were examined using a General Linear Model Repeated-Measures test. A receiver operating characteristic curve (ROC) analysis was also used to determine the ability of an ART test to detect SNHL. RESULTS: For the 0.5 kHz activator condition, there were no significant group mean differences in ART between NH and SNHL groups for either ipsilateral or contralateral activator presentation modes for the Clinical or AAW methods. There were significant group mean differences for the 1 and 2 kHz tonal activators and BBN activator for both ipsilateral and contralateral modes with greater differences in ART between groups for the AAW method than the Clinical method. In these conditions, the mean ART was lower for the AAW tests relative to the Clinical test. The greatest difference between groups was for the ipsilateral AAW tests for the comparison of NH with moderate SNHL for the BBN activator. This difference was approximately 20 dB for the AAW tests and 8 dB for the Clinical test. The ROC analysis showed that the area under the ROC curve (AUC) increased with the frequency of the activator stimulus and with the degree of hearing loss and was maximal for the BBN activator for both the AAW and Clinical methods for both ipsilateral and contralateral presentations. CONCLUSIONS: For ipsilateral and contralateral ART tests for activator frequencies above 0.5 kHz and BBN, listeners with SNHL generally had elevated ARTs compared with those with NH. The AAW method resulted in greater differences between SNHL groups and NH than the Clinical method. The AUC for detecting SNHL also increased with activator frequency and degree of hearing loss and was greatest for the BBN activator for the AAW method in both the ambient and TPP conditions. The results are encouraging for the use of an AAW ART method for the assessment of individuals with SNHL.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Humanos , Adulto , Persona de Mediana Edad , Anciano , Estapedio , Umbral Auditivo , Pérdida Auditiva Sensorineural/diagnóstico , Pruebas de Impedancia Acústica , Acústica , Audición , Reflejo , Reflejo Acústico
2.
Ear Hear ; 44(4): 854-864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36648319

RESUMEN

OBJECTIVES: There is large variability in cervical and ocular vestibular evoked myogenic potential (c- and oVEMP) amplitudes. One potential source of variability is differences in ear canal shape and size. Real ear-to-coupler difference (RECD) values are used to measure the acoustic environment of an individual's ear canal. RECD may be a useful measure to calibrate air conducted VEMP stimuli, which are elicited at high intensities and may put patients at risk of unsafe sound exposure. A recommendation for avoiding unsafe exposure is to use a 125 dB SPL stimulus for individuals with an equivalent ear canal volume (ECV) ≥ 0.9 mL and a 120 dB SPL stimulus for individuals with a smaller ECV. The purpose of this project was to determine if using a stimulus calibrated in the ear using RECD values significantly reduces intra-subject and inter-subject VEMP amplitude variability. We hypothesized that using a RECD-calibrated stimulus would significantly reduce inter-subject amplitude variability but not significantly reduce intra-subject variability. We further hypothesized that an RECD-adjusted VEMP stimulus would better protect against delivering unsafe sound exposure compared to the method of using ECV alone. DESIGN: Eleven children (4 to 9 years), 10 adolescents (10 to 18 years), and 10 young adults (20 to 40 years) with normal hearing, tympanometry, vestibular and neurological function participated. On all subjects, RECD was measured twice per ear to account for test-retest reliability. cVEMP and oVEMP were then recorded bilaterally with a 500 Hz tone burst at a traditional and an adjusted VEMP intensity level. The traditional intensity level was 125 dB SPL for individuals with ≥ 0.9 mL ECV and 120 dB SPL for individuals with ≤ 0.8 mL ECV. The adjusted intensity level was calculated by subtracting the average 500 Hz RECD measured values from the 500 Hz normative RECD value. This value was applied as a correction factor to a 125 dB SPL stimulus. Peak to peak amplitudes were recorded and used to calculate asymmetry ratios. RESULTS: Young children had significantly smaller ECVs compared to adolescents and young adults. Young children had larger RECDs; however, this was not significant in post hoc analyses. The method of calibration had no significant effect on intra-subject variability for cVEMP [ F (1, 27)= 0.996, p = 0.327] or oVEMP [ F (1, 25)= 1.679, p = 0.206]. The method of calibration also had no significant effect on inter-subject amplitude variability for cVEMP [ F (1, 120)= 0.721, p = 0.397] or oVEMP [ F (1, 120)= 0.447, p = 0.505]. Both methods of calibration adequately protected against unsafe exposure levels. However, there were subjects with ECVs ≥ 0.9 mL who approached unsafe exposure levels from the ECV-calibrated stimulus, suggesting there may be rare cases in which a 125 dB SPL stimulus is unsafe, even for patients with larger ECVs. CONCLUSIONS: The calibration method made no significant difference in intra- or inter-subject variability, indicating that the acoustic environment of the outer ear is not significantly contributing to VEMP amplitude variability. The RECD-adjusted stimulus is effective in protecting against unsafe exposure levels for two trials of both c- and oVEMPs. There may be instances where more than two trials of each test are required, which increases the effective stimulation level. Clinicians should be cautious when delivering VEMPs and not unnecessarily expose patients to unsafe levels of sound.


Asunto(s)
Potenciales Vestibulares Miogénicos Evocados , Adolescente , Humanos , Niño , Adulto Joven , Preescolar , Potenciales Vestibulares Miogénicos Evocados/fisiología , Reproducibilidad de los Resultados , Estimulación Acústica/métodos , Sonido , Pruebas de Impedancia Acústica
3.
J Speech Lang Hear Res ; 65(5): 1956-1977, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35442754

RESUMEN

PURPOSE: Children with typical development vary in how much experience they need to learn words. This could be due to differences in the amount of information encoded during periods of input, consolidated between periods of input, or both. Our primary purpose is to identify whether encoding, consolidation, or both, drive individual differences in the slow-mapping process. METHOD: Four- to 6-year-old children (N = 43) were trained on nine form-referent pairs across consecutive days. Children's ability to name referents was assessed at the beginning and end of each session. Word learning was assessed 1 month after training to determine long-term retention. RESULTS: Children with varying language knowledge and skills differed in their ability to encode words. Specifically, children varied in the number of words learned and the phonological precision of word forms at the end of the initial training session. Children demonstrated similarities in re-encoding in that they refined representations at a similar rate during subsequent sessions. Children did not differ in their ability to consolidate words between sessions, or in their ability to retain words over the 1-month delay. CONCLUSIONS: The amount of experience children need to learn words is primarily driven by the amount of information encoded during the initial experience. When provided with high-quality instruction, children demonstrate a similar ability to consolidate and retain words. Critically, word learning instruction in educational settings must include repeated explicit instruction with the same words to support learning in children with typical development and varying language skills. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.19606150.


Asunto(s)
Trastornos del Desarrollo del Lenguaje , Aprendizaje Verbal , Niño , Lenguaje Infantil , Preescolar , Humanos , Pruebas del Lenguaje , Lingüística , Vocabulario
4.
Ear Hear ; 43(2): 370-378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34320528

RESUMEN

OBJECTIVES: Acoustic stapedius reflex threshold (ART) tests are included in a standard clinical acoustic immittance test battery as an objective cross-check with behavioral results and to help identify site of lesion. In traditional clinical test batteries, middle-ear admittance of a 226 Hz probe is estimated using ear-canal measurements in the presence of a reflex-activating stimulus. In the wideband (WB) acoustic immittance ART test used in this study, the pure-tone probe is replaced by a WB probe stimulus and changes in absorbed power are estimated using ear-canal measurements in the presence of the activator. The ART is defined as the lowest level at which a criterion change in admittance (clinical) or absorbed power (WB) is observed in the presence of the activator. In the present study, ARTs were obtained in adults with normal hearing using the clinical, manual method and with a new WB automated adaptive threshold detection method. It was hypothesized that the WB test would result in lower ARTs than the clinical test because reflex-related changes in power absorbance could be observed across multiple frequency bands in the WB test compared with a single frequency in the traditional test. DESIGN: Data were collected in a prospective research design. ARTs were obtained in ipsilateral and contralateral conditions using 500, 1000, 2000 Hz, and broadband noise (BBN) activators on a clinical system and on an experimental WB system. The bandwidth of the BBN activator was 125 to 4000 Hz on the clinical system and 200 to 8000 Hz on the wideband system. ARTs were estimated at both tympanometric peak pressure (TPP) and ambient pressure on the WB system. Data were collected in both ears of 39 adults (21 males) of mean age 47.7 years (range 23-72 years). Differences in ARTs among the three threshold estimation methods (clinical, WB at TPP, WB at ambient) were examined using the general linear model repeated measures test in SPSS. Post-hoc pairwise comparisons were completed with Bonferroni correction for multiple comparisons. Statistical significance was defined as p < 0.05 for all analyses. RESULTS: ARTs obtained on the WB system at TPP and ambient pressure were significantly lower than obtained on the clinical system. ARTs obtained on the WB system at TPP were significantly higher than at ambient pressure in the 500 and 2000 Hz ipsilateral conditions. CONCLUSIONS: WB automated adaptive ARTs in normal-hearing adults were lower than for clinical methods when measured at TPP and ambient pressure. Lower presentation levels required to estimate ART in the WB test may be more tolerable to patients. Patients with ARTs that are not present at the maximum level of a traditional reflex test may have present ARTs with a WB ART test, which may reduce the need to refer for additional testing for possible retrocochlear involvement. Automation of the test may allow clinicians more time to attend to the other requisite tasks of a hearing evaluation and make the system useful for telehealth applications.


Asunto(s)
Pruebas de Impedancia Acústica , Reflejo Acústico , Pruebas de Impedancia Acústica/métodos , Adulto , Anciano , Umbral Auditivo , Oído Medio , Femenino , Audición , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
5.
Ear Hear ; 42(5): 1183-1194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928915

RESUMEN

OBJECTIVES: The objective of this work is to determine whether there is a systematic effect of middle ear effusion volume on wideband acoustic immittance in children with surgically confirmed otitis media with effusion. DESIGN: Wideband acoustic immittance was measured in 49 ears from children (9 months to 11 years) who had a diagnosis of otitis media with effusion and compared to 14 ears from children (10 months to 10 years) without a recent history of otitis media. For children with otitis media with effusion, wideband acoustic immittance testing took place in the child's preoperative waiting room before surgical placement of tympanostomy tubes. Testing was completed in a pressurized condition (wideband tympanometry) for all ears as well as in an ambient condition in a subset of ears. Intraoperative findings regarding effusion volume were reported by the surgeons immediately before tube placement and confirmed following myringotomy. This classified the volume of effusion as compared to middle ear volume categorically as either full, partial, or clear of effusion. The type of wideband acoustic immittance explored in this work was absorbance. Absorbance responses were grouped based on effusion volume into one of four groups: full effusions, partial effusions, ears clear of effusion at the time of surgery, and normal control ears. Standard tympanometry was also completed on all ears. RESULTS: Absorbance is systematically reduced as the volume of the middle ear effusion increases. This reduction is present at most frequencies but is greatest in the frequency range from 1 to 5 kHz. A multivariate logistic regression approach was utilized to classify ears based on effusion volume. The regression approach classified ears as effusion present (full and partial ears) or absent (clear ears and normal control ears) with 100% accuracy, ears with effusion present as either partial or full with 100% accuracy, and ears without effusion as either normal control ears or ears clear of effusion with 75% accuracy. Regression performance was also explored when the dataset was split into a training set (70% of the data) and a validation test set (30% of the data) to simulate how this approach would perform on unseen data in a clinical setting. Accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve are reported. Overall, this approach demonstrates high sensitivity and specificity for classifying ears as effusion being present or absent and as present effusions being full or partial with areas under the curve ranging from 1 to 0.944. Despite the lack of effusion present in both clear ears and normal control ears, this approach was able to distinguish between these ears, but with a more moderate sensitivity and specificity. No systematic effect of effusion volume was found on standard tympanometry. CONCLUSIONS: Wideband acoustic immittance, and more specifically, absorbance, is a strong and sensitive indicator of the volume of a middle ear effusion in children with otitis media with effusion.


Asunto(s)
Otitis Media con Derrame , Otitis Media , Pruebas de Impedancia Acústica , Acústica , Niño , Diagnóstico Diferencial , Humanos , Otitis Media con Derrame/diagnóstico
6.
Ear Hear ; 42(2): 355-363, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32701728

RESUMEN

OBJECTIVES: Bone conduction vibration (BCV) vestibular evoked myogenic potentials (VEMP) are clinically desirable in children for multiple reasons. However, no accepted standard exists for stimulus type and the reliability of BCV devices has not been investigated in children. The objective of the current study was to determine which BCV VEMP method (B-71, impulse hammer, or Mini-shaker) yields the highest response rates and reliability in a group of adults, adolescents, and children. It was hypothesized that the Mini-shaker would yield the highest response rates and reliability because it provides frequency specificity, higher output levels without distortion, and the most consistent force output as compared to the impulse hammer and B-71. DESIGN: Participants included 10 child (ages 5 to 10), 11 adolescent (ages 11 to 18), and 11 young adult (ages 23 to 39) normal controls. Cervical VEMP (cVEMP) and ocular VEMP (oVEMP) were measured in response to suprathreshold air-conducted, 500 Hz tone bursts and 3 types of BCV (B-71, impulse hammer, and Mini-shaker) across 2 test sessions to assess reliability. RESULTS: For cVEMP, response rates were 100% for all methods in all groups with the exception of the adult group in response to the impulse hammer (95%). For oVEMP, response rates varied by group and BCV method. For cVEMP, reliability was highest in adults using the Mini-shaker, in adolescents using the impulse hammer, and in children using the B-71. For oVEMP, reliability was highest in adults using the Mini-shaker, in adolescents using the Mini-shaker or impulse hammer, and in children using the impulse hammer. Age positively correlated with air-conducted oVEMP amplitude, but not cVEMP amplitude or cVEMP corrected amplitude. Age negatively correlated with all BCV VEMP amplitudes with the exception of cVEMP corrected amplitude in response to the Mini-shaker. CONCLUSIONS: All BCV methods resulted in consistent cVEMP responses (response rates 95 to 100%) with at least moderate reliability (intraclass correlation coefficient ≥ 0.5) for all groups. Similarly, all BCV methods resulted in consistent oVEMP responses (89 to 100%) with at least moderate reliability (intraclass correlation coefficient ≥ 0.5) except for the B-71 in adults.


Asunto(s)
Potenciales Vestibulares Miogénicos Evocados , Adolescente , Adulto , Conducción Ósea , Niño , Preescolar , Humanos , Reproducibilidad de los Resultados , Vibración , Adulto Joven
7.
Ear Hear ; 42(3): 547-557, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33156125

RESUMEN

OBJECTIVE: Wideband absorbance and absorbed power were evaluated in a group of subjects with surgically confirmed otosclerosis (Oto group), mean age 51.6 years. This is the first use of absorbed power in the assessment of middle ear disorders. Results were compared with control data from two groups of adults, one with normal hearing (NH group) mean age of 31 years, and one that was age- and sex-matched with the Oto group and had sensorineural hearing loss (SNHL group). The goal was to assess group differences using absorbance and absorbed power, to determine test performance in detecting otosclerosis, and to evaluate preoperative and postoperative test results. DESIGN: Audiometric and wideband tests were performed over frequencies up to 8 kHz. The three groups were compared on wideband tests using analysis of variance to assess group mean differences. Receiver operating characteristic (ROC) curve analysis was also used to assess test accuracy at classifying ears as belonging to the Oto or control groups using the area under the ROC curve (AUC). A longitudinal design was used to compare preoperative and postoperative results at 3 and 6 months. RESULTS: There were significant mean differences in the wideband parameters between the Oto and control groups with generally lower absorbance and absorbed power for the Oto group at ambient and tympanometric peak pressure (TPP) depending on frequency. The SNHL group had more significant differences with the Oto group than did the NH group in the high frequencies for absorbed power at ambient pressure and tympanometric absorbed power at TPP, as well as for the tympanometric tails. The greatest accuracy for classifying ears as being in the Oto group or a control group was for absorbed power at ambient pressure at 0.71 kHz with an AUC of 0.81 comparing the Oto and NH groups. The greatest accuracy for an absorbance measure was for the comparison between the Oto and NH groups for the peak-to-negative tail condition with an AUC of 0.78. In contrast, the accuracy for classifying ears into the control or Oto groups for static acoustic admittance at 226 Hz was near chance performance, which is consistent with previous findings. There were significant mean differences between preoperative and postoperative tests for absorbance and absorbed power. CONCLUSIONS: Consistent with previous studies, wideband absorbance showed better sensitivity for detecting the effects of otosclerosis on middle ear function than static acoustic admittance at 226 Hz. This study showed that wideband absorbed power is similarly sensitive and may perform even better in some instances than absorbance at classifying ears as having otosclerosis. The use of a group that was age- and sex-matched to the Oto group generally resulted in greater differences between groups in the high frequencies for absorbed power, suggesting that age-related norms in adults may be useful for the wideband clinical applications. Absorbance and absorbed power appear useful for monitoring changes in middle ear function following surgery for otosclerosis.


Asunto(s)
Pérdida Auditiva Sensorineural , Otosclerosis , Pruebas de Impedancia Acústica , Adulto , Audiometría , Oído Medio , Humanos , Persona de Mediana Edad
8.
Otol Neurotol ; 41(8): e1052-e1059, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32569144

RESUMEN

OBJECTIVE: Vestibular evoked myogenic potentials (VEMPs) are short-latency muscle potentials measured from the neck (cervical VEMP; cVEMP) or under the eyes (ocular VEMP; oVEMP), which provide information regarding function of the saccule and utricle, respectively. VEMPs are reliable when performed in adults; however, reliability of VEMPs in children is unknown. Therefore, the purpose of the study was to determine the test-retest reliability of c- and oVEMP testing in normal control children. STUDY DESIGN: Prospective. SETTING: Hospital. PATIENTS: Ten adults, 14 adolescent children and 13 young children with normal hearing. INTERVENTIONS: c- and oVEMP testing were completed across two test sessions in response to air-conduction 500 Hz tone-burst and impulse hammer stimuli. Additionally, oVEMP was completed using eyes-open and eyes-closed conditions. MAIN OUTCOME MEASURES: Intraclass correlation coefficients were calculated to determine the reliability of c- and oVEMP outcomes. RESULTS: When using air-conduction stimuli, c- and oVEMP amplitudes are reliable across test sessions in normal control children and adults. With impulse hammer stimuli, cVEMP amplitudes showed high reliability; however, oVEMP amplitudes showed low reliability in both eyes-open and eyes-closed conditions. Comparison between eyes-open and eyes-closed oVEMP conditions revealed shorter latencies and higher peak-to-peak amplitudes in the eyes-open condition. CONCLUSIONS: In this small cohort of normal control children, cVEMPs are reliable using air-conduction and impulse hammer stimuli and oVEMPs are reliable using air-conduction stimuli in the eyes-open condition. oVEMP in eyes-closed conditions were less reliable compared with eyes-open conditions and resulted in a large number of absent responses.


Asunto(s)
Potenciales Vestibulares Miogénicos Evocados , Adolescente , Adulto , Niño , Preescolar , Pruebas Auditivas , Humanos , Estudios Prospectivos , Reproducibilidad de los Resultados , Sáculo y Utrículo , Pruebas de Función Vestibular
9.
Otol Neurotol ; 41(6): 817-827, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32221109

RESUMEN

OBJECTIVE: To characterize cervical and ocular vestibular evoked myogenic potential (c- and oVEMP) responses using an impulse hammer (IH) in adults and pediatrics at standardized force levels and evaluate: the relationship of force level on VEMP amplitude, sternocleidomastoid (SCM) contraction on cVEMP amplitude, required number of tap stimuli, and subject comfort. Using these data, optimal testing parameters were selected. STUDY DESIGN: Prospective study. SETTING: Tertiary referral center. PATIENTS: Seventy-eight healthy adults, adolescents, and children with no hearing or vestibular deficits. INTERVENTIONS: All subjects received c- and oVEMP testing using IH and 500 Hz tone burst air conduction stimuli. Adults received hard, medium, and soft force levels. Adolescents and children received medium and soft force levels. A comfort questionnaire was administered pre- and post-testing. MAIN OUTCOME MEASURES: IH VEMP response parameters (response rates, latency, cVEMP pre-stimulus SCM Electromyography [EMG], and peak-to-peak amplitude) were assessed per force level. Subjective reporting for patient comfort was also assessed. RESULTS: VEMP response rates ranged from 92 to 100%. Force had a linear relationship with VEMP amplitude. SCM contraction had a linear relationship with raw cVEMP amplitude; however, dissipated with amplitude normalization. Force level did not impact the number of taps needed. A minimum peak force of 15 to 20 N, accounting for SCM contraction, and using a lower EMG monitoring limit for cVEMP is recommended to elicit reliable responses. CONCLUSIONS: Overall, IH VEMP is appropriate and comfortable to use in adults and pediatrics and can be useful when an air conduction stimulus is contraindicated or not preferred.


Asunto(s)
Potenciales Vestibulares Miogénicos Evocados , Vestíbulo del Laberinto , Estimulación Acústica , Adolescente , Adulto , Niño , Pruebas Auditivas , Humanos , Estudios Prospectivos
10.
Ear Hear ; 41(5): 1111-1124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32032225

RESUMEN

OBJECTIVES: The objective of this study was to determine if absent air conduction stimuli vestibular evoked myogenic potential (VEMP) responses found in ears after cochlear implantation can be the result of alterations in peripheral auditory mechanics rather than vestibular loss. Peripheral mechanical changes were investigated by comparing the response rates of air and bone conduction VEMPs as well as by measuring and evaluating wideband acoustic immittance (WAI) responses in ears with cochlear implants and normal-hearing control ears. The hypothesis was that the presence of a cochlear implant can lead to an air-bone gap, causing absent air conduction stimuli VEMP responses, but present bone conduction vibration VEMP responses (indicating normal vestibular function), with changes in WAI as compared with ears with normal hearing. Further hypotheses were that subsets of ears with cochlear implants would (a) have present VEMP responses to both stimuli, indicating normal vestibular function and either normal or near-normal WAI, or (b) have absent VEMP responses to both stimuli, regardless of WAI, due to true vestibular loss. DESIGN: Twenty-seven ears with cochlear implants (age range 7 to 31) and 10 ears with normal hearing (age range 7 to 31) were included in the study. All ears completed otoscopy, audiometric testing, 226 Hz tympanometry, WAI measures (absorbance), air conduction stimuli cervical and ocular VEMP testing through insert earphones, and bone conduction vibration cervical and ocular VEMP testing with a mini-shaker. Comparisons of VEMP responses to air and bone conduction stimuli, as well as absorbance responses between ears with normal hearing and ears with cochlear implants, were completed. RESULTS: All ears with normal hearing demonstrated 100% present VEMP response rates for both stimuli. Ears with cochlear implants had higher response rates to bone conduction vibration compared with air conduction stimuli for both cervical and ocular VEMPs; however, this was only significant for ocular VEMPs. Ears with cochlear implants demonstrated reduced low-frequency absorbance (500 to 1200 Hz) as compared with ears with normal hearing. To further analyze absorbance, ears with cochlear implants were placed into subgroups based on their cervical and ocular VEMP response patterns. These groups were (1) present air conduction stimuli response, present bone conduction vibration response, (2) absent air conduction stimuli response, present bone conduction vibration response, and (3) absent air conduction stimuli response, absent bone conduction vibration response. For both cervical and ocular VEMPs, the group with absent air conduction stimuli responses and present bone conduction vibration responses demonstrated the largest decrease in low-frequency absorbance as compared with the ears with normal hearing. CONCLUSIONS: Bone conduction VEMP response rates were increased compared with air-conduction VEMP response rates in ears with cochlear implants. Ears with cochlear implants also demonstrate changes in low-frequency absorbance consistent with a stiffer system. This effect was largest for ears that had absent air conduction but present bone conduction VEMPs. These findings suggest that this group, in particular, has a mechanical change that could lead to an air-bone gap, thus, abolishing the air conduction VEMP response due to an alteration in mechanics and not a true vestibular loss. Clinical considerations include using bone conduction vibration VEMPs and WAI for preoperative and postoperative testing in patients undergoing cochlear implantation.


Asunto(s)
Implantación Coclear , Potenciales Vestibulares Miogénicos Evocados , Vestíbulo del Laberinto , Estimulación Acústica , Acústica , Adolescente , Adulto , Conducción Ósea , Niño , Humanos , Adulto Joven
11.
Hear Res ; 371: 117-139, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30409510

RESUMEN

Transient-evoked otoacoustic emissions (TEOAEs) at high frequencies are a non-invasive physiological test of basilar membrane mechanics at the basal end, and have clinical potential to detect risk of hearing loss related to outer-hair-cell dysfunction. Using stimuli with constant incident pressure across frequency, TEOAEs were measured in experiment 1 at low frequencies (0.7-8 kHz) and high frequencies (7.1-14.7 kHz) in adults with normal hearing up to 8 kHz and varying hearing levels from 9 to 16 kHz. In combination with click stimuli, chirp stimuli were used with slow, medium and fast sweep rates for which the local frequency increased or decreased with time. Chirp TEOAEs were transformed into equivalent click TEOAEs by inverse filtering out chirp stimulus phase, and analyzed similarly to click TEOAEs. To improve detection above 8 kHz, TEOAEs were measured in experiment 2 with higher-level stimuli and longer averaging times. These changes increased the TEOAE signal-to-noise ratio (SNR) by 10 dB. Slower sweep rates were investigated but the elicited TEOAEs were detected in fewer ears compared to faster rates. Data were acquired in adults and children (age 11-17 y), including children with cystic fibrosis (CF) treated with ototoxic antibiotics. Test-retest measurements revealed satisfactory repeatability of high-frequency TEOAE SNR (median of 1.3 dB) and coherence synchrony measure, despite small test-retest differences related to changes in forward and reverse transmission in the ear canal. The results suggest the potential use of such tests to screen for sensorineural hearing loss, including ototoxic loss. Experiment 2 was a feasibility study to explore TEOAE test parameters that might be used in a full-scale study to screen CF patients for risk of ototoxic hearing loss.


Asunto(s)
Estimulación Acústica/métodos , Audiometría/métodos , Emisiones Otoacústicas Espontáneas/fisiología , Adolescente , Adulto , Umbral Auditivo/fisiología , Niño , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Estudios de Factibilidad , Femenino , Células Ciliadas Auditivas Externas/fisiología , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/etiología , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Ototoxicidad/diagnóstico , Ototoxicidad/etiología , Ototoxicidad/fisiopatología , Adulto Joven
12.
Ear Hear ; 39(6): 1075-1090, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29517520

RESUMEN

OBJECTIVES: The purpose of this study was to analyze distortion product otoacoustic emission (DPOAE) level and signal to noise ratio in a group of infants from birth to 4 months of age to optimize prediction of hearing status. DPOAEs from infants with normal hearing (NH) and hearing loss (HL) were used to predict the presence of conductive HL (CHL), sensorineural HL (SNHL), and mixed HL (MHL). Wideband ambient absorbance was also measured and compared among the HL types. DESIGN: This is a prospective, longitudinal study of 279 infants with verified NH and HL, including conductive, sensorineural, and mixed types that were enrolled from a well-baby nursery and two neonatal intensive care units in Cincinnati, Ohio. At approximately 1 month of age, DPOAEs (1-8 kHz), wideband absorbance (0.25-8 kHz), and air and bone conduction diagnostic tone burst auditory brainstem response (0.5-4 kHz) thresholds were measured. Hearing status was verified at approximately 9 months of age with visual reinforcement audiometry (0.5-4 kHz). Auditory brainstem response air conduction thresholds were used to assign infants to an NH or HL group, and the efficacy of DPOAE data to classify ears as NH or HL was analyzed using receiver operating characteristic (ROC) curves. Two summary statistics of the ROC curve were calculated: the area under the ROC curve and the point of symmetry on the curve at which the sensitivity and specificity were equal. DPOAE level and signal to noise ratio cutoff values were defined at each frequency as the symmetry point on their respective ROC curve, and DPOAE results were combined across frequency in a multifrequency analysis to predict the presence of HL. RESULTS: Single-frequency test performance of DPOAEs was best at mid to high frequencies (3-8 kHz) with intermediate performance at 1.5 and 2 kHz and chance performance at 1 kHz. Infants with a conductive component to their HL (CHL and MHL combined) displayed significantly lower ambient absorbance values than the NH group. No differences in ambient absorbance were found between the NH and SNHL groups. Multifrequency analysis resulted in the best prediction of HL for the SNHL/MHL group with poorer sensitivity values when infants with CHL were included. CONCLUSIONS: Clinical interpretation of DPOAEs in infants can be improved by using age-appropriate normative ranges and optimized cutoff values. DPOAE interpretation is most predictive at higher F2 test frequencies in young infants (2-8 kHz) due to poor test performance at 1 to 1.5 kHz. Multifrequency rules can be used to improve sensitivity while balancing specificity. Last, a sensitive middle ear measure such as wideband absorbance should be included in the test battery to assess possibility of a conductive component to the HL.


Asunto(s)
Pérdida Auditiva/diagnóstico , Emisiones Otoacústicas Espontáneas/fisiología , Análisis de Varianza , Área Bajo la Curva , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Audición/fisiología , Pérdida Auditiva/fisiopatología , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Valores de Referencia
13.
J Acoust Soc Am ; 143(1): 399, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390789

RESUMEN

Transient-evoked otoacoustic emission (TEOAE) responses were measured in normal-hearing adult ears over frequencies from 0.7 to 8 kHz, and analyzed with reflectance/admittance data to measure absorbed sound power and the tympanometric peak pressure (TPP). The mean TPP was close to ambient. TEOAEs were measured in the ear canal at ambient pressure, TPP, and fixed air pressures from 150 to -200 daPa. Both click and chirp stimuli were used to elicit TEOAEs, in which the incident sound pressure level was constant across frequency. TEOAE levels were similar at ambient and TPP, and for frequencies from 0.7 to 2.8 kHz decreased with increasing positive and negative pressures. At 4-8 kHz, TEOAE levels were larger at positive pressures. This asymmetry is possibly related to changes in mechanical transmission through the ossicular chain. The mean TEOAE group delay did not change with pressure, although small changes were observed in the mean instantaneous frequency and group spread. Chirp TEOAEs measured in an adult ear with Eustachian tube dysfunction and TPP of -165 daPa were more robust at TPP than at ambient. Overall, results demonstrate the feasibility and clinical potential of measuring TEOAEs at fixed pressures in the ear canal, which provide additional information relative to TEOAEs measured at ambient pressure.


Asunto(s)
Estimulación Acústica/métodos , Vías Auditivas/fisiología , Cóclea/fisiología , Conducto Auditivo Externo/fisiología , Pruebas Auditivas/métodos , Emisiones Otoacústicas Espontáneas , Adulto , Enfermedades del Oído/diagnóstico , Enfermedades del Oído/fisiopatología , Trompa Auditiva/fisiopatología , Femenino , Humanos , Masculino , Valor Predictivo de las Pruebas , Presión , Sonido , Adulto Joven
14.
Ear Hear ; 39(2): 269-277, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29466264

RESUMEN

OBJECTIVES: Vestibular evoked myogenic potential (VEMP) testing is increasingly utilized in pediatric vestibular evaluations due to its diagnostic capability to identify otolith dysfunction and feasibility of testing. However, there is evidence demonstrating that the high-intensity stimulation level required to elicit a reliable VEMP response causes acoustic trauma in adults. Despite utility of VEMP testing in children, similar findings are unknown. It is hypothesized that increased sound exposure may exist in children because differences in ear-canal volume (ECV) compared with adults, and the effect of stimulus parameters (e.g., signal duration and intensity) will alter exposure levels delivered to a child's ear. The objectives of this study are to (1) measure peak to peak equivalent sound pressure levels (peSPL) in children with normal hearing (CNH) and young adults with normal hearing (ANH) using high-intensity VEMP stimuli, (2) determine the effect of ECV on peSPL and calculate a safe exposure level for VEMP, and (3) assess whether cochlear changes exist after VEMP exposure. DESIGN: This was a 2-phase approach. Fifteen CNH and 12 ANH participated in phase I. Equivalent ECV was measured. In 1 ear, peSPL was recorded for 5 seconds at 105 to 125 dB SPL, in 5-dB increments for 500- and 750-Hz tone bursts. Recorded peSPL values (accounting for stimulus duration) were then used to calculate safe sound energy exposure values for VEMP testing using the 132-dB recommended energy allowance from the 2003 European Union Guidelines. Fifteen CNH and 10 ANH received cervical and ocular VEMP testing in 1 ear in phase II. Subjects completed tympanometry, pre- and postaudiometric threshold testing, distortion product otoacoustic emissions, and questionnaire addressing subjective otologic symptoms to study the effect of VEMP exposure on cochlear function. RESULTS: (1) In response to high-intensity stimulation levels (e.g., 125 dB SPL), CNH had significantly higher peSPL measurements and smaller ECVs compared with ANH. (2) A significant linear relationship between equivalent ECV (as measured by diagnostic tympanometry) and peSPL exists and has an effect on total sound energy exposure level; based on data from phase I, 120 dB SPL was determined to be an acoustically safe stimulation level for testing in children. (3) Using calculated safe stimulation level for VEMP testing, there were no significant effect of VEMP exposure on cochlear function (as measured by audiometric thresholds, distortion product otoacoustic emission amplitude levels, or subjective symptoms) in CNH and ANH. CONCLUSIONS: peSPL sound recordings in children's ears are significantly higher (~3 dB) than that in adults in response to high-intensity VEMP stimuli that are commonly practiced. Equivalent ECV contributes to peSPL delivered to the ear during VEMP testing and should be considered to determine safe acoustic VEMP stimulus parameters; children with smaller ECVs are at risk for unsafe sound exposure during routine VEMP testing, and stimuli should not exceed 120 dB SPL. Using 120 dB SPL stimulus level for children during VEMP testing yields no change to cochlear function and reliable VEMP responses.


Asunto(s)
Estimulación Acústica , Pruebas Auditivas , Potenciales Vestibulares Miogénicos Evocados , Adulto , Factores de Edad , Umbral Auditivo , Niño , Preescolar , Femenino , Pruebas Auditivas/métodos , Humanos , Masculino , Emisiones Otoacústicas Espontáneas , Sonido
15.
Ear Hear ; 39(5): 863-873, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29369290

RESUMEN

OBJECTIVES: The purpose of this study was to describe normal characteristics of distortion product otoacoustic emission (DPOAE) signal and noise level in a group of newborns and infants with normal hearing followed longitudinally from birth to 15 months of age. DESIGN: This is a prospective, longitudinal study of 231 infants who passed newborn hearing screening and were verified to have normal hearing. Infants were enrolled from a well-baby nursery and two neonatal intensive care units (NICUs) in Cincinnati, OH. Normal hearing was confirmed with threshold auditory brainstem response and visual reinforcement audiometry. DPOAEs were measured in up to four study visits over the first year after birth. Stimulus frequencies f1 and f2 were used with f2/f1 = 1.22, and the DPOAE was recorded at frequency 2f1-f2. A longitudinal repeated-measure linear mixed model design was used to study changes in DPOAE level and noise level as related to age, middle ear transfer, race, and NICU history. RESULTS: Significant changes in the DPOAE and noise levels occurred from birth to 12 months of age. DPOAE levels were the highest at 1 month of age. The largest decrease in DPOAE level occurred between 1 and 5 months of age in the mid to high frequencies (2 to 8 kHz) with minimal changes occurring between 6, 9, and 12 months of age. The decrease in DPOAE level was significantly related to a decrease in wideband absorbance at the same f2 frequencies. DPOAE noise level increased only slightly with age over the first year with the highest noise levels in the 12-month-old age range. Minor, nonsystematic effects for NICU history, race, and gestational age at birth were found, thus these results were generalizable to commonly seen clinical populations. CONCLUSIONS: DPOAE levels were related to wideband middle ear absorbance changes in this large sample of infants confirmed to have normal hearing at auditory brainstem response and visual reinforcement audiometry testing. This normative database can be used to evaluate clinical results from birth to 1 year of age. The distributions of DPOAE level and signal to noise ratio data reported herein across frequency and age in normal-hearing infants who were healthy or had NICU histories may be helpful to detect the presence of hearing loss in infants.


Asunto(s)
Oído Medio/fisiología , Audición/fisiología , Emisiones Otoacústicas Espontáneas , Audiometría/métodos , Cóclea/fisiología , Femenino , Pruebas Auditivas , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Ruido , Valores de Referencia
16.
Ear Hear ; 39(1): 69-84, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28708814

RESUMEN

OBJECTIVES: The goal of this study was to investigate the use of transient-evoked otoacoustic emissions (TEOAEs) and middle ear absorbance measurements to monitor auditory function in patients with cystic fibrosis (CF) receiving ototoxic medications. TEOAEs were elicited with a chirp stimulus using an extended bandwidth (0.71 to 8 kHz) to measure cochlear function at higher frequencies than traditional TEOAEs. Absorbance over a wide bandwidth (0.25 to 8 kHz) provides information on middle ear function. The combination of these time-efficient measurements has the potential to identify early signs of ototoxic hearing loss. DESIGN: A longitudinal study design was used to monitor the hearing of 91 patients with CF (median age = 25 years; age range = 15 to 63 years) who received known ototoxic medications (e.g., tobramycin) to prevent or treat bacterial lung infections. Results were compared to 37 normally hearing young adults (median age = 32.5 years; age range = 18 to 65 years) without a history of CF or similar treatments. Clinical testing included 226-Hz tympanometry, pure-tone air-conduction threshold testing from 0.25 to 16 kHz and bone conduction from 0.25 to 4 kHz. Experimental testing included wideband absorbance at ambient and tympanometric peak pressure and TEOAEs in three stimulus conditions: at ambient pressure and at tympanometric peak pressure using a chirp stimulus with constant incident pressure level across frequency and at ambient pressure using a chirp stimulus with constant absorbed sound power across frequency. RESULTS: At the initial visit, behavioral audiometric results indicated that 76 of the 157 ears (48%) from patients with CF had normal hearing, whereas 81 of these ears (52%) had sensorineural hearing loss for at least one frequency. Seven ears from four patients had a confirmed behavioral change in hearing threshold for ≥3 visits during study participation. Receiver operating characteristic curve analyses demonstrated that all three TEOAE conditions were useful for distinguishing CF ears with normal hearing from ears with sensorineural hearing loss, with an area under the receiver operating characteristic curve values ranging from 0.78 to 0.92 across methods for frequency bands from 2.8 to 8 kHz. Case studies are presented to illustrate the relationship between changes in audiometric thresholds, TEOAEs, and absorbance across study visits. Absorbance measures permitted identification of potential middle ear dysfunction at 5.7 kHz in an ear that exhibited a temporary hearing loss. CONCLUSIONS: The joint use of TEOAEs and absorbance has the potential to explain fluctuations in audiometric thresholds due to changes in cochlear function, middle ear function, or both. These findings are encouraging for the joint use of TEOAE and wideband absorbance objective tests for monitoring ototoxicity, particularly, in patients who may be too ill for behavioral hearing tests. Additional longitudinal studies are needed in a larger number of CF patients receiving ototoxic drugs to further evaluate the clinical utility of these measures in an ototoxic monitoring program.


Asunto(s)
Aminoglicósidos/efectos adversos , Antibacterianos/efectos adversos , Fibrosis Quística/complicaciones , Citotoxinas/efectos adversos , Pérdida Auditiva Sensorineural/diagnóstico , Emisiones Otoacústicas Espontáneas , Adolescente , Adulto , Aminoglicósidos/uso terapéutico , Antibacterianos/uso terapéutico , Audiometría , Umbral Auditivo , Fibrosis Quística/tratamiento farmacológico , Oído Medio/fisiopatología , Femenino , Pérdida Auditiva Sensorineural/inducido químicamente , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Adulto Joven
17.
J Am Acad Audiol ; 28(9): 838-860, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28972472

RESUMEN

BACKGROUND: Otosclerosis is a progressive middle-ear disease that affects conductive transmission through the middle ear. Ear-canal acoustic tests may be useful in the diagnosis of conductive disorders. This study addressed the degree to which results from a battery of ear-canal tests, which include wideband reflectance, acoustic stapedius muscle reflex threshold (ASRT), and transient evoked otoacoustic emissions (TEOAEs), were effective in quantifying a risk of otosclerosis and in evaluating middle-ear function in ears after surgical intervention for otosclerosis. PURPOSE: To evaluate the ability of the test battery to classify ears as normal or otosclerotic, measure the accuracy of reflectance in classifying ears as normal or otosclerotic, and evaluate the similarity of responses in normal ears compared with ears after surgical intervention for otosclerosis. RESEARCH DESIGN: A quasi-experimental cross-sectional study incorporating case control was used. Three groups were studied: one diagnosed with otosclerosis before corrective surgery, a group that received corrective surgery for otosclerosis, and a control group. STUDY SAMPLE: The test groups included 23 ears (13 right and 10 left) with normal hearing from 16 participants (4 male and 12 female), 12 ears (7 right and 5 left) diagnosed with otosclerosis from 9 participants (3 male and 6 female), and 13 ears (4 right and 9 left) after surgical intervention from 10 participants (2 male and 8 female). DATA COLLECTION AND ANALYSIS: Participants received audiometric evaluations and clinical immittance testing. Experimental tests performed included ASRT tests with wideband reference signal (0.25-8 kHz), reflectance tests (0.25-8 kHz), which were parameterized by absorbance and group delay at ambient pressure and at swept tympanometric pressures, and TEOAE tests using chirp stimuli (1-8 kHz). ASRTs were measured in ipsilateral and contralateral conditions using tonal and broadband noise activators. Experimental ASRT tests were based on the difference in wideband-absorbed sound power before and after presenting the activator. Diagnostic accuracy to classify ears as otosclerotic or normal was quantified by the area under the receiver operating characteristic curve (AUC) for univariate and multivariate reflectance tests. The multivariate predictor used a small number of input reflectance variables, each having a large AUC, in a principal components analysis to create independent variables and followed by a logistic regression procedure to classify the test ears. RESULTS: Relative to the results in normal ears, diagnosed otosclerosis ears more frequently showed absent TEOAEs and ASRTs, reduced ambient absorbance at 4 kHz, and a different pattern of tympanometric absorbance and group delay (absorbance increased at 2.8 kHz at the positive-pressure tail and decreased at 0.7-1 kHz at the peak pressure, whereas group delay decreased at positive and negative-pressure tails from 0.35-0.7 kHz, and at 2.8-4 kHz at positive-pressure tail). Using a multivariate predictor with three reflectance variables, tympanometric reflectance (AUC = 0.95) was more accurate than ambient reflectance (AUC = 0.88) in classifying ears as normal or otosclerotic. CONCLUSIONS: Reflectance provides a middle-ear test that is sensitive to classifying ears as otosclerotic or normal, which may be useful in clinical applications.


Asunto(s)
Pérdida Auditiva Conductiva/diagnóstico , Pruebas Auditivas/métodos , Otosclerosis/diagnóstico , Acústica del Lenguaje , Pruebas de Impedancia Acústica , Adulto , Audiometría , Umbral Auditivo , Estudios de Casos y Controles , Estudios Transversales , Femenino , Pérdida Auditiva Conductiva/etiología , Pérdida Auditiva Conductiva/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Emisiones Otoacústicas Espontáneas/fisiología , Otosclerosis/complicaciones , Otosclerosis/fisiopatología , Curva ROC , Reflejo Acústico
18.
J Am Acad Audiol ; 28(5): 395-403, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28534730

RESUMEN

BACKGROUND: Cervical and ocular vestibular-evoked myogenic potentials (VEMPs) have become common clinical vestibular assessments. However, VEMP testing requires high intensity stimuli, raising concerns regarding safety with children, where sound pressure levels may be higher due to their smaller ear canal volumes. PURPOSE: The purpose of this study was to estimate the range of peak-to-peak equivalent sound pressure levels (peSPLs) in child and adult ears in response to high intensity stimuli (i.e., 100 dB normal hearing level [nHL]) commonly used for VEMP testing and make a determination of whether acoustic stimuli levels with VEMP testing are safe for use in children. RESEARCH DESIGN: Prospective experimental. STUDY SAMPLE: Ten children (4-6 years) and ten young adults (24-35 years) with normal hearing sensitivity and middle ear function participated in the study. DATA COLLECTION AND ANALYSIS: Probe microphone peSPL measurements of clicks and 500 Hz tonebursts (TBs) were recorded in tubes of small, medium, and large diameter, and in a Brüel & Kjær Ear Simulator Type 4157 to assess for linearity of the stimulus at high levels. The different diameter tubes were used to approximate the range of cross-sectional areas in infant, child, and adult ears, respectively. Equivalent ear canal volume and peSPL measurements were then recorded in child and adult ears. Lower intensity levels were used in the participant's ears to limit exposure to high intensity sound. The peSPL measurements in participant ears were extrapolated using predictions from linear mixed models to determine if equivalent ear canal volume significantly contributed to overall peSPL and to estimate the mean and 95% confidence intervals of peSPLs in child and adult ears when high intensity stimulus levels (100 dB nHL) are used for VEMP testing without exposing subjects to high-intensity stimuli. RESULTS: Measurements from the coupler and tubes suggested: 1) each stimuli was linear, 2) there were no distortions or nonlinearities at high levels, and 3) peSPL increased with decreased tube diameter. Measurements in participant ears suggested: 1) peSPL was approximately 3 dB larger in child compared to adult ears, and 2) peSPL was larger in response to clicks compared to 500 Hz TBs. The model predicted the following 95% confidence interval for a 100 dB nHL click: 127-136.5 dB peSPL in adult ears and 128.7-138.2 dB peSPL in child ears. The model predicted the following 95% confidence interval for a 100 dB nHL 500 Hz TB stimulus: 122.2-128.2 dB peSPL in adult ears and 124.8-130.8 dB peSPL in child ears. CONCLUSIONS: Our findings suggest that 1) when completing VEMP testing, the stimulus is approximately 3 dB higher in a child's ear, 2) a 500 Hz TB is recommended over a click as it has lower peSPL compared to the click, and 3) both duration and intensity should be considered when choosing VEMP stimuli. Calculating the total sound energy exposure for your chosen stimuli is recommended as it accounts for both duration and intensity. When using this calculation for children, consider adding 3 dB to the stimulus level.


Asunto(s)
Estimulación Acústica/efectos adversos , Seguridad del Paciente , Potenciales Vestibulares Miogénicos Evocados/fisiología , Estimulación Acústica/métodos , Estimulación Acústica/normas , Adulto , Niño , Preescolar , Conducto Auditivo Externo/anatomía & histología , Conducto Auditivo Externo/fisiología , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/fisiopatología , Humanos , Presión , Estudios Prospectivos , Sonido/efectos adversos , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/fisiopatología , Vestíbulo del Laberinto/fisiología
19.
Ear Hear ; 38(4): 507-520, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28437273

RESUMEN

OBJECTIVES: An important clinical application of transient-evoked otoacoustic emissions (TEOAEs) is to evaluate cochlear outer hair cell function for the purpose of detecting sensorineural hearing loss (SNHL). Double-evoked TEOAEs were measured using a chirp stimulus, in which the stimuli had an extended frequency range compared to clinical tests. The present study compared TEOAEs recorded using an unweighted stimulus presented at either ambient pressure or tympanometric peak pressure (TPP) in the ear canal and TEOAEs recorded using a power-weighted stimulus at ambient pressure. The unweighted stimulus had approximately constant incident pressure magnitude across frequency, and the power-weighted stimulus had approximately constant absorbed sound power across frequency. The objective of this study was to compare TEOAEs from 0.79 to 8 kHz using these three stimulus conditions in adults to assess test performance in classifying ears as having either normal hearing or SNHL. DESIGN: Measurements were completed on 87 adult participants. Eligible participants had either normal hearing (N = 40; M F = 16 24; mean age = 30 years) or SNHL (N = 47; M F = 20 27; mean age = 58 years), and normal middle ear function as defined by standard clinical criteria for 226-Hz tympanometry. Clinical audiometry, immittance, and an experimental wideband test battery, which included reflectance and TEOAE tests presented for 1-min durations, were completed for each ear on all participants. All tests were then repeated 1 to 2 months later. TEOAEs were measured by presenting the stimulus in the three stimulus conditions. TEOAE data were analyzed in each hearing group in terms of the half-octave-averaged signal to noise ratio (SNR) and the coherence synchrony measure (CSM) at frequencies between 1 and 8 kHz. The test-retest reliability of these measures was calculated. The area under the receiver operating characteristic curve (AUC) was measured at audiometric frequencies between 1 and 8 kHz to determine TEOAE test performance in distinguishing SNHL from normal hearing. RESULTS: Mean TEOAE SNR was ≥8.7 dB for normal-hearing ears and ≤6 dB for SNHL ears for all three stimulus conditions across all frequencies. Mean test-retest reliability of TEOAE SNR was ≤4.3 dB for both hearing groups across all frequencies, although it was generally less (≤3.5 dB) for lower frequencies (1 to 4 kHz). AUCs were between 0.85 and 0.94 for all three TEOAE conditions at all frequencies, except for the ambient TEOAE condition at 2 kHz (0.82) and for all TEOAE conditions at 5.7 kHz with AUCs between 0.78 and 0.81. Power-weighted TEOAE AUCs were significantly higher (p < 0.05) than ambient TEOAE AUCs at 2 and 2.8 kHz, as was the TPP TEOAE AUC at 2.8 kHz when using CSM as the classifier variable. CONCLUSIONS: TEOAEs evaluated in an ambient condition, at TPP and in a power-weighted stimulus condition, had good test performance in identifying ears with SNHL based on SNR and CSM in the frequency range from 1 to 8 kHz and showed good test-retest reliability. Power-weighted TEOAEs showed the best test performance at 2 and 2.8 kHz. These findings are encouraging as a potential objective clinical tool to identify patients with cochlear hearing loss.


Asunto(s)
Células Ciliadas Auditivas Externas , Pérdida Auditiva Sensorineural/fisiopatología , Emisiones Otoacústicas Espontáneas , Estimulación Acústica/métodos , Adulto , Área Bajo la Curva , Estudios de Casos y Controles , Femenino , Pérdida Auditiva Sensorineural/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Reproducibilidad de los Resultados , Relación Señal-Ruido
20.
Int J Audiol ; 56(9): 622-634, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28434272

RESUMEN

OBJECTIVE: The purpose of this study was to evaluate pressurised wideband acoustic immittance (WAI) tests in children with Down syndrome (DS) and in typically developing children (TD) for prediction of conductive hearing loss (CHL) and patency of pressure equalising tubes (PETs). DESIGN: Audiologic diagnosis was determined by audiometry in combination with distortion-product otoacoustic emissions, 0.226 kHz tympanometry and otoscopy. WAI results were compared for ears within diagnostic categories (Normal, CHL and PET) and between groups (TD and DS). STUDY SAMPLE: Children with DS (n = 40; mean age 6.4 years), and TD children (n = 48; mean age 5.1 years) were included. RESULTS: Wideband absorbance was significantly lower at 1-4 kHz in ears with CHL compared to NH for both TD and DS groups. In ears with patent PETs, wideband absorbance and group delay (GD) were larger than in ears without PETs between 0.25 and 1.5 kHz. Wideband absorbance tests were performed similarly for prediction of CHL and patent PETs in TD and DS groups. CONCLUSIONS: Wideband absorbance and GD revealed specific patterns in both TD children and those with DS that can assist in detection of the presence of significant CHL, assess the patency of PETs, and provide frequency-specific information in the audiometric range.


Asunto(s)
Síndrome de Down/complicaciones , Pérdida Auditiva Conductiva/diagnóstico , Pruebas Auditivas/métodos , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Ventilación del Oído Medio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA