Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carcinogenesis ; 18(9): 1785-91, 1997 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9328176

RESUMEN

The toxicity of Ni(II), Co(II) and Cu(II) in animals, and that of Cd(II) in cultured cells, has been associated with generation of the promutagenic lesion 8-oxo-7,8-dihydroguanine (8-oxoguanine) in DNA, among other effects. One possible source of this base may be 8-oxo-7,8-dihydro-2'-deoxyguanosine-5'-triphosphate (8-oxo-dGTP), a product of oxidative damage to the nucleotide pool, from which it is incorporated into DNA. To promote such incorporation, the metals would have to inhibit specific cellular 8-oxo-dGTPases that eliminate 8-oxo-dGTP from the nucleotide pool. The present study was designed to test such inhibition in vitro on 8-oxo-dGTPases from two different species, the human MTH1 protein and Escherichia coli MutT protein. In the presence of Mg(II), the natural activator of 8-oxo-dGTPases, all four metals were found to inhibit both enzymes. For MTH1, the IC50 values (+/- SE; n = 3-4) were 17 +/- 2 microM for Cu(II), 30 +/- 8 microM for Cd(II), 376 +/- 71 microM for Co(II) and 801 +/- 97 microM for Ni(II). For MutT, they were 60 +/- 6 microM for Cd(II), 102 +/- 8 microM for Cu(II), 1461 +/- 96 microM for Ni(II) and 8788 +/- 1003 microM for Co(II). Thus, Cu(II) and Cd(II) emerged as much stronger inhibitors than Ni(II) and Co(II), and MTH1 appeared to be generally more sensitive to metal inhibition than MutT. Interestingly, in the absence of Mg(II), the activity of the enzymes could be restored by Co(II) to 73% of that with Mg(II) alone for MutT, and 34% for MTH1, the other metals being much less or non-effective. The difference in sensitivity to metal inhibition between the two enzymes may reflect the differences in the amino acid ligands, especially the cysteine ligand, outside their evolutionarily conserved Mg(II)-binding active sites, which might indicate predominantly non-competitive or uncompetitive mechanism of the inhibition. The overall results suggest that inhibition of 8-oxo-dGTPases may be involved in the mechanisms of induction of the 8-oxoguanine lesion in DNA by the metal ions studied, especially the non-redox-active Cd(II) cation.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Carcinógenos/farmacología , Enzimas Reparadoras del ADN , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli , Metales/farmacología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Cadmio/farmacología , Cobalto/farmacología , Cobre/farmacología , Escherichia coli/enzimología , Humanos , Níquel/farmacología , Pirofosfatasas
2.
Chem Res Toxicol ; 9(8): 1375-81, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8951243

RESUMEN

Promutagenic 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) levels are increased in DNA of animals exposed to carcinogenic metals, such as Ni(II). Besides being generated directly in genomic DNA, 8-oxo-dG may be incorporated there from 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), a product of oxidative damage to the nucleotide pool. The Escherichia coli dGTPase MutT, and analogous dGTPases in rats and humans, have been suggested as a defense against such incorporation because they hydrolyze 8-oxo-dGTP to 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-monophosphate (8-oxo-dGMP). MutT and its mammalian counterparts are Mg(II)-dependent enzymes. Ni(II), in turn, is known to interact antagonistically with Mg(II) in biological systems. Thus, we hypothesized that Ni(II) might inhibit the activity of MutT. As an initial examination of this hypothesis, we conducted enzyme kinetic studies of MutT to determine the effect of Ni(II) on MutT activity and the mechanisms involved. As found, Ni(II) inhibited MutT in a concentration-dependent manner when either dGTP or 8-oxo-dGTP was the nucleotide substrate. Ni(II) was determined to be an uncompetitive inhibitor of MutT with respect to Mg(II) when dGTP was the substrate, with apparent Ki of 1.2 mM Ni(II), and a noncompetitive inhibitor with respect to Mg(II) when 8-oxo-dGTP was the substrate, with apparent Ki of 0.9 mM Ni(II). Hence, the two metal cations did not compete with each other for binding at the MutT active site. This makes it difficult to predict Ni(II) effects on 8-oxo-dGTPases of other species. However, based upon the amino acid sequences of human and rat MutT-like dGTPases, their capacity for Ni(II) binding should be greater than that of MutT. Whether this could lead to stronger inhibition of those enzymes by Ni(II), or not, remains to be investigated.


Asunto(s)
Carcinógenos/farmacología , Níquel/farmacología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Animales , Cromatografía Líquida de Alta Presión , Escherichia coli/enzimología , Humanos , Cinética , Modelos Químicos , Monoéster Fosfórico Hidrolasas/genética , Ratas
3.
J Immunol ; 150(7): 3022-9, 1993 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-8454871

RESUMEN

The human macrophage inflammatory proteins-1 alpha and -beta (MIP-1 alpha and -beta), which are also known as LD78 and ACT2, respectively, are distinct but highly related members of the chemoattractant cytokine (chemokine) family. rMIP-1 alpha and -beta labeled with 125I specifically bind to human peripheral blood monocytes, the monocytic cell line THP-1, peripheral blood T cells, and the YT cell line. Steady state binding experiments revealed approximately 3000 high affinity binding sites/cell for MIP-1 alpha on human monocytes and on THP-1 cells, with Kd values of 383 pM and 450 pM, respectively. Human MIP-1 alpha and -beta had nearly identical affinities for the binding sites and each competed equally well for binding. Human monocyte chemotactic and activating factor (MCAF), a member of the same chemokine family, consistently displaced about 25% of human MIP-1 alpha and -beta binding on monocytes but not on YT cells, which did not bind MCAF. On the other hand, human rMIP-1 alpha and -beta partially inhibited binding of radiolabeled MCAF to monocytes. Both MIP-1 alpha and -beta were chemotactic for human monocytes. Preincubation of monocytes with human rMIP-1 alpha or -beta markedly reduced cell migration towards the other cytokine, whereas preincubation with human rMCAF only partially desensitized the monocyte chemotaxis response to human rMIP-1 alpha or -beta. These data suggest the existence of three subtypes of receptors, i.e., one unique receptor shared by MIP-1 alpha and -beta, a second unique receptor for MCAF, and a third species that recognizes both MCAF and MIP-1 peptides.


Asunto(s)
Factores Quimiotácticos/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Monocinas/metabolismo , Receptores Inmunológicos/análisis , Sitios de Unión , Línea Celular , Quimiocina CCL2 , Quimiocina CCL4 , Quimiotaxis/efectos de los fármacos , Citocinas/farmacología , Humanos , Proteínas Inflamatorias de Macrófagos , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocinas/farmacología , Proteínas Recombinantes/metabolismo
4.
Chem Biol Interact ; 79(3): 323-34, 1991.
Artículo en Inglés | MEDLINE | ID: mdl-1913976

RESUMEN

Interactions of Ni(II) with the base moieties of 2'-deoxynucleosides and 2'-deoxynucleotides were studied by means of UV difference spectroscopy in order to elucidate the mechanisms of site-specific enhancement by Ni(II) of DNA base oxidation with active oxygen species, observed previously (Kasprzak et al., Cancer Res., 49 (1989) 5964; Carcinogenesis, 11 (1990) 647). The interactions were generally weak and could be quantitated only at pH 7.2-7.9. The resulting coordination binding of Ni(II) was stronger with the purine derivatives, especially these of guanine, than with pyrimidine derivatives. Also, Ni(II) interacted more strongly with the bases of 2'-deoxynucleotides than with the bases of 2'-deoxynucleosides. The apparent stability constants for the interactions calculated with the use of a non-linear regression method, equalled 102 +/- 14, 159 +/- 30 and 290 +/- 70 M-1 for Ni(II) coordinated by 5'dAMP, 5'dADP and 5'dATP, respectively, and 305 +/- 73, 191 +/- 54, and 270 +/- 28 M-1 for 5'dGMP, 5'dGDP and 5'dGTP, respectively. Stability constant for the dG Ni(II) interaction was 39 +/- 7 M-1. Interactions of Ni(II) with the bases of dA, dC, dT and the dC- and dT- mono-, di- and tri-phosphates were too weak for meaningful quantitation. The strongest relative Ni(II) interaction with dG may explain high sensitivity of the dG site at the DNA molecule to Ni(II)-mediated oxidation observed in vitro and in vivo. The present results contrast with Ni(II)-directed site specific cleavage of DNA with H2O2 that occurs preferentially at the pyrimidine bases (Kawanishi et al., Carcinogenesis, 10 (1989) 2231).


Asunto(s)
Carcinógenos/metabolismo , Desoxirribonucleósidos/metabolismo , Desoxirribonucleótidos/metabolismo , Níquel/metabolismo , Carcinógenos/toxicidad , ADN/efectos de los fármacos , Interacciones Farmacológicas , Níquel/toxicidad , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...