Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 66: 76-88, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24468672

RESUMEN

The excretion pattern of arsenic (As) species after seafood intake varies widely depending on species ingested and individual handling. We have previously reported the 72 h urinary excretion of arsenicals following a single dose of seafood. Here, we report the excretion patterns in the same 37 subjects following 15 days daily consumption of either 150 g cod, salmon, blue mussels or potato (control), followed by a 72 h period with a low-As diet. In all seafood groups, total As (tAs) in plasma and urinary excretion of tAs, arsenobetaine (AB) and dimethylarsinate (DMA) increased significantly after the intervention. Confirming the single dose study AB and DMA excreted were apparently endogenously formed from other arsenicals ingested. Total tAs excretion was 1386, 763 and 303 µg in the cod, blue mussel and salmon groups, respectively; about twice the amounts after the single dose study indicating accumulation of arsenicals. In the cod group, rapid excretion after the single dose was associated with lower total As in blood and less accumulation after two weeks with seafood indicating lower accumulation. In the blue mussels group only, inorganic As (iAs) excretion increased significantly, whilst methylarsonate (MA) strongly increased, indicating a possible toxicological concern of repeated mussel consumption.


Asunto(s)
Arsenicales/orina , Dieta , Alimentos Marinos , Adulto , Arsenicales/sangre , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Adulto Joven
2.
Food Chem Toxicol ; 50(7): 2462-72, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22546366

RESUMEN

Blue mussels (Mytilus edulis) accumulate and biotransform arsenic (As) to a larger variety of arsenicals than most seafood. Eight volunteers ingested a test meal consisting of 150 g blue mussel (680 µg As), followed by 72 h with an identical, low As controlled diet and full urine sampling. We provide a complete speciation, with individual patterns, of urinary As excretion. Total As (tAs) urinary excretion was 328 ± 47 µg, whereof arsenobetaine (AB) and dimethylarsinate (DMA) accounted for 66% and 21%, respectively. Fifteen minor urinary arsenicals were quantified with inductively coupled plasma mass spectrometry (ICPMS) coupled to reverse-phase, anion and cation-exchange high performance liquid chromatography (HPLC). Thio-arsenicals and non-thio minor arsenicals (including inorganic As (iAs) and methylarsonate (MA)) contributed 10% and 7% of the total sum of species excretion, respectively, but there were large individual differences in the excretion patterns. Apparently, formation of thio-arsenicals was negatively correlated to AB formation and excretion, possibly indicating a metabolic interrelationship. The results may be of toxicological relevance since DMA and MA have been classified as possibly carcinogenic, and six of the excreted As species were thio-arsenicals which recently have been recognized as toxic, while iAs toxicity is well known.


Asunto(s)
Arsénico/orina , Bivalvos , Animales , Humanos
3.
Environ Res ; 112: 28-39, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22137101

RESUMEN

Seafood is the predominant food source of several organoarsenic compounds. Some seafood species, like crustaceans and seaweed, also contain inorganic arsenic (iAs), a well-known toxicant. It is unclear whether human biotransformation of ingested organoarsenicals from seafood result in formation of arsenicals of health concern. The present controlled dietary study examined the urinary excretion of arsenic compounds (total arsenic (tAs), iAs, AB (arsenobetaine), dimethylarsinate (DMA) and methylarsonate (MA)) following ingestion of a single test meal of seafood (cod, 780 µg tAs, farmed salmon, 290 µg tAs or blue mussel, 690 µg tAs or potato (control, 110 µg tAs)) in 38 volunteers. The amount of ingested tAs excreted via the urine within 0-72 h varied significantly among the groups: Cod, 74% (52-92%), salmon 56% (46-82%), blue mussel 49% (37-78%), control 45% (30-60%). The estimated total urinary excretion of AB was higher than the amount of ingested AB in the blue mussel group (112%) and also ingestion of cod seemed to result in more AB, indicating possible endogenous formation of AB from other organoarsenicals. Excretion of iAs was lower than ingested (13-22% of the ingested iAs was excreted in the different groups). Although the ingested amount of iAs+DMA+MA was low for all seafood groups (1.2-4.5% of tAs ingested), the urinary DMA excretion was high in the blue mussel and salmon groups, counting for 25% and 11% of the excreted tAs respectively. In conclusion our data indicate a possible formation of AB as a result of biotransformation of other organic arsenicals. The considerable amount of DMA excreted is probably not only due to methylation of ingested iAs, but due to biotransformation of organoarsenicals making it an inappropriate biomarker of iAs exposure in populations with a high seafood intake.


Asunto(s)
Arsenicales/orina , Ácido Cacodílico/orina , Contaminación de Alimentos , Alimentos Marinos , Contaminantes Químicos del Agua/farmacocinética , Adulto , Animales , Biotransformación , Monitoreo del Ambiente , Femenino , Cadena Alimentaria , Contaminación de Alimentos/análisis , Gadiformes/metabolismo , Humanos , Masculino , Mytilus edulis/metabolismo , Noruega , Salmón/metabolismo , Alimentos Marinos/análisis , Adulto Joven
4.
Geobiology ; 8(5): 372-90, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20698893

RESUMEN

Pillow lava rims and interpillow hyaloclastites from the upper part of the Pechenga Greenstone Belt, Kola Peninsula, N-Russia contain rare tubular textures 15-20 µm in diameter and up to several hundred µm long in prehnite-pumpellyite to lower greenschist facies meta-volcanic glass. The textures are septate with regular compartments 5-20 µm across and exhibit branching, stopping and no intersecting features. Synchrotron micro-energy dispersive X-ray was used to image elemental distributions; scanning transmission X-ray microscopy, Fe L-edge and C K-edge were used to identify iron and carbon speciation at interfaces between the tubular textures and the host rock. In situ U-Pb radiometric dating by LA-MC-ICP-MS (laser ablation multicollector inductively coupled plasma mass spectrometry) of titanite from pillow lavas yielded a metamorphic age of 1790 ± 89 Ma. Focused ion-beam milling combined with transmission electron microscopy was used to analyze the textures in three dimensions. Electron diffraction showed that the textures are mineralized by orientated pumpellyite. On the margins of the tubes, an interface between mica or chlorite and the pumpellyite shows evidence of dissolution reactions where the pumpellyite is replaced by mica/chlorite. A thin poorly crystalline Fe-phase, probably precipitated out of solution, occurs at the interface between pumpellyite and mica/chlorite. This sequence of phases leads to the hypothesis that the tubes were initially hollow, compartmentalized structures in volcanic glass that were mineralized by pumpellyite during low-grade metamorphism. Later, a Fe-bearing fluid mineralized the compartments between the pumpellyite and lastly the pumpellyite was partially dissolved and replaced by chlorite during greenschist metamorphism. The most plausible origin for a septate-tubular texture is a progressive etching of the host matrix by several generations of microbes and subsequently these tubes were filled by authigenic mineral precipitates. This preserves the textures in the rock record over geological time. The micro textures reported here thus represent a pumpellyite-mineralized trace fossil that records a Paleoproterozoic sub-seafloor biosphere.


Asunto(s)
Fósiles , Sedimentos Geológicos/análisis , Paleontología , Erupciones Volcánicas/análisis , Silicatos de Aluminio/química , Animales , Cloruros/química , Compuestos Férricos/química , Geología , Microscopía/instrumentación , Microscopía/métodos , Microscopía Electrónica de Rastreo , Minerales , Datación Radiométrica , Federación de Rusia , Espectrometría por Rayos X , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...