Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 120(24): 247001, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29957008

RESUMEN

We have observed the spatial distribution of magnetic flux in Nb, Cu/Nb, and Cu/Nb/Co thin films using muon-spin rotation. In an isolated 50-nm-thick Nb film, we find a weak flux expulsion (Meissner effect) which becomes significantly enhanced when adding an adjacent 40 nm layer of Cu. The added Cu layer exhibits a Meissner effect (due to induced superconducting pairs) and is at least as effective as the Nb to expel flux. These results are confirmed by theoretical calculations using the quasiclassical Green's function formalism. An unexpected further significant enhancement of the flux expulsion is observed when adding a thin (2.4 nm) ferromagnetic Co layer to the bottom side of the Nb. This observed cooperation between superconductivity and ferromagnetism, by an unknown mechanism, forms a key ingredient for developing superconducting spintronics.

2.
Nat Commun ; 6: 8278, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26387444

RESUMEN

Materials with interacting magnetic degrees of freedom display a rich variety of magnetic behaviour that can lead to novel collective equilibrium and out-of-equilibrium phenomena. In equilibrium, thermodynamic phases appear with the associated phase transitions providing a characteristic signature of the underlying collective behaviour. Here we create a thermally active artificial kagome spin ice that is made up of a large array of dipolar interacting nanomagnets and undergoes phase transitions predicted by microscopic theory. We use low energy muon spectroscopy to probe the dynamic behaviour of the interacting nanomagnets and observe peaks in the muon relaxation rate that can be identified with the critical temperatures of the predicted phase transitions. This provides experimental evidence that a frustrated magnetic metamaterial can be engineered to admit thermodynamic phases.

3.
Phys Rev Lett ; 96(14): 147002, 2006 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-16712111

RESUMEN

We study the influence of a voltage-driven nonequilibrium of quasiparticles on the properties of short mesoscopic superconducting wires. We employ a numerical calculation based upon the Usadel equation. Going beyond linear response, we find a nonthermal energy distribution of the quasiparticles caused by the applied bias voltage. It is demonstrated that this nonequilibrium drives the system from the superconducting state to the normal state, at a current density far below the critical depairing current density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...