Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 13(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34372101

RESUMEN

The vast majority of commodity polymers are acquired from petrochemical feedstock, and these resources will plausibly be depleted within the next 100 years. Therefore, the utilization of carbon-neutral renewable resources for the production of polymers is crucial in modern green chemistry. Herein, we report an eco-friendly strategy that uses enzyme catalysis to design biobased unsaturated (co)polyesters from muconic acid derivatives. This method is an attractive pathway for the production of well-defined unsaturated polyesters with minimum side reactions. A suite of characterization techniques was performed to probe the reaction mechanism and properties of the obtained polyesters. It is rationalized that the alkene functionality of the muconate monomers plays an important role in the enzyme catalysis mechanism. The rendered polyesters possessed excellent thermal stabilities and unreacted alkene functionality that can consecutively undergo chain extension, copolymerization, or act as an anchor for other functional groups. These properties open new avenues in the fields of unsaturated polyester resins and photosensitive coatings.

2.
Soft Matter ; 17(3): 715-723, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33220668

RESUMEN

Anionic poly(vinylcaprolactam-co-itaconicacid-co-dimethylitaconate) microgels were synthesized via dispersion polymerization and their responsiveness towards cations, namely Mg2+, Sr2+, Cu2+ and Fe3+, was investigated. The itaconic moieties chelate the metal ions which act as a crosslinker and decrease the electrostatic repulsion within the network, leading to a decrease in the gel size. The responsiveness towards the metal ion concentration has been studied via dynamic light scattering (DLS) and the number of ions bonded within the network has been quantified with ion chromatography. Through the protonation of the carboxylate groups in the gel network, their interaction with the cations is significantly lowered, and the metals are consequently released back in solution. The number of ions released was assessed also via ion chromatography for all four ions, whilst Mg2+ was also used as a model ion to display the reversibility of the system. The microgels can bond and release divalent cations over multiple cycles without undergoing any loss of functionality. Moreover, these gels also selectively entrap Fe3+ with respect to the remaining divalent cations, opening the possibility of using the proposed gels in the digestive tract as biocompatible chelating agents to fight iron overaccumulation.

3.
RSC Adv ; 10(38): 22701-22711, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35514604

RESUMEN

Aqueous self-assembly of amphiphilic block copolymers is studied extensively for biomedical applications like drug delivery and nanoreactors. The commonly used hydrophilic block poly(ethylene oxide) (PEO), however, suffers from several drawbacks. As a potent alternative, poly(glycidol) (PG) has gained increasing interest, benefiting from its easy synthesis, high biocompatibility and flexibility as well as enhanced functionality compared to PEO. In this study, we present a quick and well-controlled synthesis of poly(butylene oxide)-block-poly(glycidol) (PBO-b-PG) amphiphilic diblock copolymers together with a straight-forward self-assembly protocol. Depending on the hydrophilic mass fraction of the copolymer, nanoscopic micelles, worms and polymersomes were formed as well as microscopic giant unilamellar vesicles. The particles were analysed regarding their size and shape, using dynamic and static light scattering, TEM and Cryo-TEM imaging as well as confocal laser scanning microscopy. We have discovered a strong dependence of the formed morphology on the self-assembly method and show that only solvent exchange leads to the formation of homogenous phases. Thus, a variety of different structures can be obtained from a highly flexible copolymer, justifying a potential use in biomedical applications.

4.
Langmuir ; 35(41): 13413-13420, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31584278

RESUMEN

Poly(N-vinylcaprolactam-co-itaconate) (P(VCL-co-IADME) microgels were synthesized varying the molar ratio between VCL and IADME via free radical precipitation polymerization in the presence of quaternary ammonium surfactant. In order to determine the effect of the divalent metal ions on the structure and the swelling behavior of the microgel systems, both neutral and charged forms of the hydrogels after hydrolysis were investigated. The triggered gel collapse caused by the divalent metal ion together with the quantification of the metal ion uptake was studied in detail by titration and ion chromatography methods and revealed the minimum concentration around 0.1 mM to trigger gel collapse on the treated gels. Uptake and release dynamics of the gels were followed by turbidity measurements and were in the time-range of 2 and 17 s, depending on the composition and the concentrations.

5.
ACS Omega ; 4(15): 16481-16492, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31616826

RESUMEN

A series of poly(tetrahydrofuran)s with molecular weights above entanglement molecular weight M e were synthesized, and one of their end-groups was functionalized with a supramolecular entity so that the corresponding polymers form a brushlike structure suitable for comparison with conventional irreversible bottlebrush polymers. To compare their relaxation mechanisms, linear rheology was employed and showed that a hierarchical relaxation, which is usually observed in bottlebrush polymers, occurs in these materials, too. The polymer chain segments close to the supramolecular backbone are highly immobilized due to strong association in the center of polymer brush and cannot relax via reptation mechanism, which is mainly responsible for linear entangled polymer relaxations. Therefore, disentanglement can take much longer through contour length fluctuations and arm retraction processes similar to covalent bottlebrush polymers and combs. The relaxed ends of polymers then act as solvent to let the remaining segments of the polymeric brush undergo Rouse-like motions (constraint release Rouse). At longer times, additional plateau appears, which can be attributed to the relaxation of the entire supramolecular bottlebrush polymer via hopping or reptative motions. With an increase of temperature, viscoelastic solid behavior turns into viscoelastic liquid due to reversible depolymerization of the supramolecular backbone of the bottlebrush polymer. The elastic modulus (G' in the order of kPa) was much less than the values found for the entanglement plateau modulus of linear poly(tetrahydrofuran) (in order of MPa). This low modulus value, which exists up to very low frequencies (high temperatures), makes them a good candidate for supersoft elastomers.

6.
Macromolecules ; 51(13): 4910-4916, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-30018463

RESUMEN

Supramolecular polymers bearing weak hydrogen bonds (sticker) can express outstanding dynamic properties due to their labile association. Studying the linear viscoelasticity (LVE) of this type of polymer can provide us with sufficient knowledge to design polymeric materials for applications that need dynamic properties such as self-healing. Using different compositions of flexible weak stickers, LVE analysis showed scalings corresponding to a transition from a linear precursor to a cluster. By introducing one sticker per repeating unit of the precursor polymer, the effect of sticker distribution along the chain as well as phase separation is excluded. However, even a fully functionalized polymer could not show any network formation, whereas surprisingly, a stable cluster was formed. This proves that weakly associated networks do not dissociate rapidly and can relax as a cluster at extended time before the dissociation of stickers can lead to the relaxation of linear analogous (slow kinetics similar to strong physical or even chemical bonds.) On the other hand, the absence of a gel even in fully sticker-functionalized polymers shows that the weakness of these polymers can be described as their weakness in complete association (thermodynamically not favored).

7.
ACS Omega ; 3(12): 18950-18957, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458459

RESUMEN

Dehydration of binary methyl acetate-water mixtures under neutral, acidic, and basic conditions was carried out by using PERVAP composite membranes based on polyvinyl alcohol and poly(1-vinylpyrrolidone-co-2-(dimethylamino)ethyl methacrylate) P(VP-co-DMAEMA). The effects of an acid (HCl) and a base (NaOH) on the separation performance of the membrane during the pervaporation process were investigated. The pH-responsive nature of membranes has been confirmed by swelling tests and analysis of the chemical structure of polymeric membranes. In addition, a mechanism of ring-opening of VP units is proposed and correlated to the changes of membrane separation performance.

8.
ACS Macro Lett ; 7(9): 1111-1119, 2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-35632946

RESUMEN

Reversible-deactivation radical polymerizations (controlled radical polymerizations) have revolutionized and revitalized the field of polymer synthesis. While enzymes and other biologically derived catalysts have long been known to initiate free radical polymerizations, the ability of peroxidases, hemoglobin, laccases, enzyme-mimetics, chlorophylls, heme, red blood cells, bacteria, and other biocatalysts to control or initiate reversible-deactivation radical polymerizations has only been described recently. Here, the scope of biocatalytic atom transfer radical polymerizations (bioATRP), enzyme-initiated reversible addition-fragmentation chain transfer radical polymerizations (bioRAFT), biocatalytic organometallic-mediated radical polymerizations (bioOMRP), and biocatalytic reversible complexation mediated polymerizations (bioRCMP) is critically reviewed, and the potential of these reactions for the environmentally friendly synthesis of precision polymers, for the preparation of functional nanostructures, for the modification of surfaces, and for biosensing is discussed.

9.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 3): 374-7, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27006811

RESUMEN

In the title complex, [Ni(SO4)(C5H8N2)3(H2O)2], the Ni(II) ion is coordinated by three facial 1-ethyl-1H-imidazole ligands, one monodentate sulfate ligand and two water mol-ecules in a slightly distorted octa-hedral coordination environment. In the crystal, two pairs of O-H⋯O hydrogen bonds link complex mol-ecules, forming inversion dimers incorporating R 2 (4)(8), R 2 (2)(8) and R 2 (2)(12) rings. The dimeric unit also contains two symmetry-unique intra-molecular O-H⋯O hydrogen bonds. In addition, weak C-H⋯O hydrogen bonds, weak C-H⋯π inter-actions and π-π inter-actions with a centroid-centroid distance of 3.560 (2) Šcombine to form a three-dimensional network. One of the ethyl groups is disordered over two sets of sites with occupancies in the ratio 0.586 (7):0.414 (7).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...