Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 18(37): 7171-7180, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36098069

RESUMEN

Highly conductive nanocomposite hydrogels have been challenging to produce due to their high water volumes inhibiting the incorporation of an essential amount of conductive nanofillers. Furthermore, the most common fillers used, typically for easy integration, display small aspect ratios. Thus, the formation of interparticle pathways for electronic travel is limited, resulting in low conductivities. Here, we introduce ultralong silver nanowires (ULAgNWs) into a thermoresponsive, volume changing PNIPAM gel to form a nanocomposite that shows switchable electronic performance. The produced nanocomposite surpasses other PNIPAM nanocomposites by expressing the largest electrical switch ratio and the highest peak conductivity. The PNIPAM matrix possesses an interconnected microporous structure that offers a spacious network for the dispersion of nanowires while still maintaining a high volume switch ratio and excellent elastic behavior under extreme compression cycles (98% compression). The ULAgNWs significantly enhance the probability of more numerous connections forming during shrinking cycles. The high swellability displayed by the PNIPAM gel provides the ability to separate the embedded nanowires by many lengths. Together, they form a nanocomposite that can thermo-modulate its electrical properties. Moreover, the conductive PNIPAM maintains the electrical switch of 4.3-4.4 orders of magnitude with thermo-responsive cycles. Because of their high electrical conductivity and outstanding elastic behavior, these stimuli-responsive nanocomposite hydrogels may expand the prospects for conductive hydrogel applications and provide greater performance in their applications.

2.
JAMA Psychiatry ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34132750

RESUMEN

IMPORTANCE: Animal studies have shown that the adolescent brain is sensitive to disruptions in endocannabinoid signaling, resulting in altered neurodevelopment and lasting behavioral effects. However, few studies have investigated ties between cannabis use and adolescent brain development in humans. OBJECTIVE: To examine the degree to which magnetic resonance (MR) imaging-assessed cerebral cortical thickness development is associated with cannabis use in a longitudinal sample of adolescents. DESIGN, SETTING, AND PARTICIPANTS: Data were obtained from the community-based IMAGEN cohort study, conducted across 8 European sites. Baseline data used in the present study were acquired from March 1, 2008, to December 31, 2011, and follow-up data were acquired from January 1, 2013, to December 31, 2016. A total of 799 IMAGEN participants were identified who reported being cannabis naive at study baseline and had behavioral and neuroimaging data available at baseline and 5-year follow-up. Statistical analysis was performed from October 1, 2019, to August 31, 2020. MAIN OUTCOMES AND MEASURES: Cannabis use was assessed at baseline and 5-year follow-up with the European School Survey Project on Alcohol and Other Drugs. Anatomical MR images were acquired with a 3-dimensional T1-weighted magnetization prepared gradient echo sequence. Quality-controlled native MR images were processed through the CIVET pipeline, version 2.1.0. RESULTS: The study evaluated 1598 MR images from 799 participants (450 female participants [56.3%]; mean [SD] age, 14.4 [0.4] years at baseline and 19.0 [0.7] years at follow-up). At 5-year follow-up, cannabis use (from 0 to >40 uses) was negatively associated with thickness in left prefrontal (peak: t785 = -4.87, cluster size = 1558 vertices; P = 1.10 × 10-6, random field theory cluster corrected) and right prefrontal (peak: t785 = -4.27, cluster size = 1551 vertices; P = 2.81 × 10-5, random field theory cluster corrected) cortices. There were no significant associations between lifetime cannabis use at 5-year follow-up and baseline cortical thickness, suggesting that the observed neuroanatomical differences did not precede initiation of cannabis use. Longitudinal analysis revealed that age-related cortical thinning was qualified by cannabis use in a dose-dependent fashion such that greater use, from baseline to follow-up, was associated with increased thinning in left prefrontal (peak: t815.27 = -4.24, cluster size = 3643 vertices; P = 2.28 × 10-8, random field theory cluster corrected) and right prefrontal (peak: t813.30 = -4.71, cluster size = 2675 vertices; P = 3.72 × 10-8, random field theory cluster corrected) cortices. The spatial pattern of cannabis-related thinning was associated with age-related thinning in this sample (r = 0.540; P < .001), and a positron emission tomography-assessed cannabinoid 1 receptor-binding map derived from a separate sample of participants (r = -0.189; P < .001). Analysis revealed that thinning in right prefrontal cortices, from baseline to follow-up, was associated with attentional impulsiveness at follow-up. CONCLUSIONS AND RELEVANCE: Results suggest that cannabis use during adolescence is associated with altered neurodevelopment, particularly in cortices rich in cannabinoid 1 receptors and undergoing the greatest age-related thickness change in middle to late adolescence.

3.
Psychopharmacology (Berl) ; 237(11): 3447-3458, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32772145

RESUMEN

RATIONALE: The amygdala is a key brain structure to study in relation to cannabis use as reflected by its high-density of cannabinoid receptors and functional reactivity to processes relevant to drug use. Previously, we identified a correlation between cannabis use in early adolescence and amygdala hyper-reactivity to angry faces (Spechler et al. 2015). OBJECTIVES: Here, we leveraged the longitudinal aspect of the same dataset (the IMAGEN study) to determine (1) if amygdala hyper-reactivity predicts future cannabis use and (2) if amygdala reactivity is affected by prolonged cannabis exposure during adolescence. METHODS: First, linear regressions predicted the level of cannabis use by age 19 using amygdala reactivity to angry faces measured at age 14 prior to cannabis exposure in a sample of 1119 participants. Next, we evaluated the time course of amygdala functional development from age 14 to 19 for angry face processing and how it might be associated with protracted cannabis use throughout this developmental window. We compared the sample from Spechler et al. 2015, the majority of whom escalated their use over the 5-year interval, to a matched sample of non-users. RESULTS: Right amygdala reactivity to angry faces significantly predicted cannabis use 5 years later in a dose-response fashion. Cannabis-naïve adolescents demonstrated the lowest levels of amygdala reactivity. No such predictive relationship was identified for alcohol or cigarette use. Next, follow-up analyses indicated a significant group-by-time interaction for the right amygdala. CONCLUSIONS: (1) Right amygdala hyper-reactivity is predictive of future cannabis use, and (2) protracted cannabis exposure during adolescence may alter the rate of neurotypical functional development.


Asunto(s)
Conducta del Adolescente/psicología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/metabolismo , Uso de la Marihuana/metabolismo , Uso de la Marihuana/psicología , Adolescente , Conducta del Adolescente/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Reconocimiento Facial/fisiología , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Masculino , Uso de la Marihuana/tendencias , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...