Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(33): 23437-23448, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39115182

RESUMEN

Understanding the sub-band gap luminescence in Ruddlesden-Popper 2D metal halide hybrid perovskites (2D HaPs) is essential for efficient charge injection and collection in optoelectronic devices. Still, its origins are still under debate with respect to the role of self-trapped excitons or radiative recombination via defect states. In this study, we characterized charge separation, recombination, and transport in single crystals, exfoliated layers, and polycrystalline thin films of butylammonium lead iodide (BA2PbI4), one of the most prominent 2D HaPs. We combined complementary defect- and exciton-sensitive methods such as photoluminescence (PL) spectroscopy, modulated and time-resolved surface photovoltage (SPV) spectroscopy, constant final state photoelectron yield spectroscopy (CFSYS), and constant light-induced magneto transport (CLIMAT), to demonstrate striking differences between charge separation induced by dissociation of excitons and by excitation of mobile charge carriers from defect states. Our results suggest that the broad sub-band gap emission in BA2PbI4 and other 2D HaPs is caused by radiative recombination via defect states (shallow as well as midgap states) rather than self-trapped excitons. Density functional theory (DFT) results show that common defects can readily occur and produce an energetic profile that agrees well with the experimental results. The DFT results suggest that the formation of iodine interstitials is the initial process leading to degradation, responsible for the emergence of midgap states, and that defect engineering will play a key role in enhancing the optoelectronic properties of 2D HaPs in the future.

2.
Nano Lett ; 24(30): 9276-9282, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39018419

RESUMEN

The chirality transfer phenomenon is attractive for enhancing the optical functionality of nanomaterials by inducing sensitivity to the circular polarization states of photons. An underexplored aspect is how material properties of the achiral semiconductor impact the induced chiroptical signatures. Here we apply atomistic time-dependent density functional theory simulations to investigate the material properties that influence the chiroptical signatures of a lead halide perovskite nanocrystal with a chiral molecule bound to the surface. First, we find that both lattice disorder created by surface strain and halide substitution can increase the chiroptical response of the perovskite quantum dots by an order of magnitude. Both phenomena are attributed to a broadening of the density of the electronically excited states. Second, the intensity of the anisotropy spectra decreases with increasing dot size with a power law decay. Overall, these insights can be used to help guide experimental realization of highly resolvable polarized optical features in semiconducting nanomaterials.

3.
J Phys Chem Lett ; 15(15): 4142-4150, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38593451

RESUMEN

Charge-transfer (CT) excited states play an important role in many biological processes. However, many computational approaches often inadequately address the equilibration effects of nuclear and environmental degrees of freedom on these states. One prominent example of systems in which CT states are of utmost importance is reaction centers (RC) in photosystems. Here we use a multiscale approach combined with time-dependent density functional theory to explore the lowest CT excited state of the special pair PD1-PD2 in the Photosystem II-RC of a cyanobacterium. We find that the nonequilibrium CT excited state resides near the Soret band, making an exciton the lowest-energy excited state. However, accounting for nuclear and state-specific dielectric equilibration along the CT potential energy surface (PES), the CT state PD1--PD2+ stabilizes energetically below the excitonic state. This underscores the crucial role of state-specific solvation in mapping the PES of CT states, as demonstrated in a simplified dimer model.

4.
Methods Mol Biol ; 2713: 159-169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37639122

RESUMEN

The dermis contains a dense network of tissue macrophages, which contribute to tissue homeostasis, inflammation, and pathogen clearance. Dermal macrophages are partly replenished by circulating monocytes, which fuel the resident population, especially in case of tissue damage or inflammation. The complexity of the tissue, containing blood and lymphoid vessels, hair bulbs, sebaceous glands, and peripheral nerves, allows for the development of distinct macrophages populations. In steady state, discrete subtypes can be distinguished due to their surface marker expression and localization within the dermis. In this chapter, we describe how to extract dermal macrophages from the skin and highlight different gating strategies to identify monocyte and macrophage populations.


Asunto(s)
Macrófagos , Monocitos , Humanos , Citometría de Flujo , Inflamación , Dermis
5.
Nano Lett ; 23(24): 11586-11592, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38065566

RESUMEN

Layered lead-halide perovskites have shown tremendous success as an active material for optoelectronics. This is attributed to the electronic structure of the inorganic sublattice and large exciton binding energies due to quantum and dielectric confinement. Expanding functionalities for applications that depend on free-carrier generation requires new material design routes to decrease the binding energy. Here we use electronic structure methods with model Bethe-Salpeter equation (BSE) to examine the contributions of the dielectric screening and charge-transfer excited-states to the exciton binding energy of phenylethylammonium (PEA2PbBr4) and naphthlethylammonium (NEA2PbBr4) lead-bromide perovskites. Our model BSE calculations show that NEA introduces hole acceptor states which impose charge-transfer character on the exciton along with larger dielectric screening. This substantially decreases the exciton binding compared to PEA. This result suggests the use of organic cations with high dielectric screening and hole acceptor states as a viable strategy for reducing exciton binding energies in two-dimensional halide perovskites.

6.
Sci Immunol ; 8(86): eadg3517, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37566679

RESUMEN

The skin needs to balance tolerance of colonizing microflora with rapid detection of potential pathogens. Flexible response mechanisms would seem most suitable to accommodate the dynamic challenges of effective antimicrobial defense and restoration of tissue homeostasis. Here, we dissected macrophage-intrinsic mechanisms and microenvironmental cues that tune macrophage signaling in localized skin infection with the colonizing and opportunistic pathogen Staphylococcus aureus. Early in skin infection, the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by γδ T cells and hypoxic conditions within the dermal microenvironment diverted macrophages away from a homeostatic M-CSF- and hypoxia-inducible factor 1α (HIF-1α)-dependent program. This allowed macrophages to be metabolically rewired for maximal inflammatory activity, which requires expression of Irg1 and generation of itaconate, but not HIF-1α. This multifactorial macrophage rewiring program was required for both the timely clearance of bacteria and for the provision of local immune memory. These findings indicate that immunometabolic conditioning allows dermal macrophages to cycle between antimicrobial activity and protection against secondary infections.


Asunto(s)
Macrófagos , Infecciones Cutáneas Estafilocócicas , Humanos , Citocinas/metabolismo , Transducción de Señal , Infecciones Cutáneas Estafilocócicas/metabolismo
7.
J Phys Chem Lett ; 13(37): 8755-8760, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36099248

RESUMEN

Donor-acceptor molecular complexes are a popular class of materials utilizing charge-transfer states for practical applications. A recent class of donor-acceptor dyads based on the fluorescent BODIPY functionalized with triphenylamine (TPA) shows the peculiar property of dual fluorescence. It is hypothesized that instead of the sensitized charge-transfer state being optically dark, it provides an additional bright radiative pathway. Here we use time-dependent density functional theory to characterize the energetic alignment of excitonic and charge-transfer states in a BODIPY-TPA molecular complex. We observe that using a long-range exchange corrected functional in combination with state-specific solvation scheme gives a qualitatively correct alignment of the exciton and charge-transfer states and an enhancement in oscillator strength for the equilibrium solvated charge-transfer state, in agreement with experiment. This work provides rationalization of charge-transfer state emission and provides a foundation to explore charge-transfer using ab initio excited-state nonadiabatic dynamics.

8.
J Phys Chem Lett ; 13(39): 9210-9220, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36170557

RESUMEN

Using non-adiabatic dynamics and Redfield theory, we predicted the optical spectra, radiative and nonradiative decay rates, and photoluminescence quantum yields (PLQYs) for In(III) dipyrrin-based complexes (i) with electron-withdrawing (EW) or electron-donating (ED) substituents on the meso-phenyl group and (ii) upon fusing the pyrrin and phenyl rings via saturated or unsaturated bridging to increase structural rigidity. The ED groups lead to a primary π,π* character with a minor intraligand charge transfer (ILCT) contribution to the emissive state, while EW groups increase the ILCT contribution and red-shift the luminescence to ∼1.5 eV. Saturated annulation enhances the PLQYs for complexes with primary π,π* character compared to those of the non-annulated and unsaturated-annulated complexes, while both unsaturated and saturated annulation decrease the PLQYs for complexes with primary ILCT character. We found that PLQY improvement goes beyond a simple concept of structural rigidity. In contrast, the charge transfer character of excitonic states is a key parameter for engineering the NIR emission of In(III) dipyrrin complexes.

9.
Cell Metab ; 34(5): 747-760.e6, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35508110

RESUMEN

Adipose tissue (AT) plays a central role in systemic metabolic homeostasis, but its function during bacterial infection remains unclear. Following subcutaneous bacterial infection, adipocytes surrounding draining lymph nodes initiated a transcriptional response indicative of stimulation with IFN-γ and a shift away from lipid metabolism toward an immunologic function. Natural killer (NK) and invariant NK T (iNKT) cells were identified as sources of infection-induced IFN-γ in perinodal AT (PAT). IFN-γ induced Nos2 expression in adipocytes through a process dependent on nuclear-binding oligomerization domain 1 (NOD1) sensing of live intracellular bacteria. iNOS expression was coupled to metabolic rewiring, inducing increased diversion of extracellular L-arginine through the arginosuccinate shunt and urea cycle to produce nitric oxide (NO), directly mediating bacterial clearance. In vivo, control of infection in adipocytes was dependent on adipocyte-intrinsic sensing of IFN-γ and expression of iNOS. Thus, adipocytes are licensed by innate lymphocytes to acquire anti-bacterial functions during infection.


Asunto(s)
Señales (Psicología) , Células Asesinas Naturales , Adipocitos/metabolismo , Inmunidad , Interferón gamma/metabolismo
10.
J Phys Chem Lett ; 13(2): 686-693, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35023749

RESUMEN

Chiroptical properties are of interest for various applications, including structure determination, polarized photodetectors, and spintronics. Inducing chiroptical activity into semiconductors is challenging because of difficulties in creating asymmetric crystal structures. One promising method is to use chirality transfer by deploying chiral organic molecules as capping ligands for nanocrystals. Experimentally, chiral-capped nanocrystals show emergent chiroptical signatures, but the mechanisms for chirality transfer remain unclear. Here we utilize atomistic modeling using time-dependent density functional theory calculations to explore chirality transfer in CsPbX3 (X = Cl, I) clusters capped with chiral diaminocyclohexane (DACH) enantiomers. When DACH enantiomers are bound to the cluster surface, the perovskite optical transitions gain chiral signatures. This observed chirality transfer is best rationalized by chiral molecular dipole-cluster transition dipole coupling. With multiple DACH molecules bound to the cluster surface, anisotropy factors are found to increase proportionally to the surface ligand density, providing mechanistic insight toward improving chiroptical functionality in semiconductor nanomaterials.

11.
J Chem Theory Comput ; 17(11): 7224-7236, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34665621

RESUMEN

Lead halide perovskite (LHP) nanocrystals (NCs) show exceptional defect tolerance which has been attributed to their unique electronic structure, where defect energy levels are not introduced inside the fundamental bandgap, and the role of polarons in screening charge carriers from defects. Here, we use ab initio atomistic simulations to explore the interplay between various surface chemistries (A = Cs+, R'NH3+; X = Br-, RCOO-) used to passivate a CsPbBr3 NC surface and their impact on the ground-state (GS) and excited-state (ES) photophysical properties. We investigate pristine fully passivated surfaces and A-X vacancy defects that reflect chemical reactions A+ + X- → AX on the surface, which result in ligand desorption. For each surface configuration, calculations are performed in the GS and lowest ES (L-ES) electronic configurations, approximating polaron formation after photoexcitation. For models with A-X surface vacancies, we find that localized electron surface trap (ST) states emerge ∼100-400 meV below the pristine Se band in the L-ES configuration due to polaronic nuclear reorganization. Surprisingly, these trap states contribute relatively bright Sh → ST spectral features. To test if these surface trap states remain bright in a dynamic (thermal) situation we implement excited-state molecular dynamics simulations. It is found that the surface defected model shows an enhanced nonradiative recombination rate which reduces the photoluminescence quantum yield (PLQY) from 95% for the pristine surface to 75%. This is accompanied by an order of magnitude reduction in PL intensity and a red shift of the transition energy. This study provides more evidence of the defect tolerance of LHP NCs along with evidence of surface trap states contributing to efficient photoluminescence. The observation of relatively bright surface trap states could provide insight into photophysical phenomena, such as size-dependent stretched-exponential photoluminescence decay and Stokes shifts.

12.
Cell ; 184(14): 3774-3793.e25, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34115982

RESUMEN

Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.


Asunto(s)
Citomegalovirus/fisiología , Macrófagos Alveolares/virología , Animales , Presentación de Antígeno , Efecto Espectador , Ciclo Celular , Línea Celular Transformada , Reprogramación Celular , Citomegalovirus/patogenicidad , Citomegalovirus/ultraestructura , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Proteínas Fluorescentes Verdes/metabolismo , Pulmón/patología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/ultraestructura , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo , Células Madre/patología , Replicación Viral/fisiología , Vía de Señalización Wnt
13.
Nat Commun ; 12(1): 2027, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795674

RESUMEN

The immune response to mycobacteria is characterized by granuloma formation, which features multinucleated giant cells as a unique macrophage type. We previously found that multinucleated giant cells result from Toll-like receptor-induced DNA damage and cell autonomous cell cycle modifications. However, the giant cell progenitor identity remained unclear. Here, we show that the giant cell-forming potential is a particular trait of monocyte progenitors. Common monocyte progenitors potently produce cytokines in response to mycobacteria and their immune-active molecules. In addition, common monocyte progenitors accumulate cholesterol and lipids, which are prerequisites for giant cell transformation. Inducible monocyte progenitors are so far undescribed circulating common monocyte progenitor descendants with high giant cell-forming potential. Monocyte progenitors are induced in mycobacterial infections and localize to granulomas. Accordingly, they exhibit important immunological functions in mycobacterial infections. Moreover, their signature trait of high cholesterol metabolism may be piggy-backed by mycobacteria to create a permissive niche.


Asunto(s)
Citocinas/inmunología , Células Gigantes/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Células Madre/inmunología , Animales , Células Cultivadas , Citocinas/metabolismo , Femenino , Células Gigantes/metabolismo , Células Gigantes/microbiología , Granuloma/inmunología , Granuloma/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Monocitos/metabolismo , Monocitos/microbiología , Mycobacterium/inmunología , Mycobacterium/fisiología , Células Madre/metabolismo , Células Madre/microbiología
14.
FEBS J ; 288(2): 405-426, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32502309

RESUMEN

The interface between the mammalian host and its environment is formed by barrier tissues, for example, of the skin, and the respiratory and the intestinal tracts. On the one hand, barrier tissues are colonized by site-adapted microbial communities, and on the other hand, they contain specific myeloid cell networks comprising macrophages, dendritic cells, and granulocytes. These immune cells are tightly regulated in function and cell number, indicating important roles in maintaining tissue homeostasis and immune balance in the presence of commensal microorganisms. The regulation of myeloid cell density and activation involves cell-autonomous 'single-loop circuits' including autocrine mechanisms. However, an array of microenvironmental factors originating from nonimmune cells and the microbiota, as well as the microanatomical structure, impose additional layers of regulation onto resident myeloid cells. This review discusses models integrating these factors into cell-specific programs to instruct differentiation and proliferation best suited for the maintenance and renewal of immune homeostasis in the tissue-specific environment.


Asunto(s)
Células Dendríticas/inmunología , Granulocitos/microbiología , Macrófagos/inmunología , Microbiota/fisiología , Modelos Inmunológicos , Simbiosis/inmunología , Animales , Comunicación Autocrina/inmunología , Recuento de Células , Diferenciación Celular , Proliferación Celular , Citocinas/genética , Citocinas/inmunología , Células Dendríticas/microbiología , Granulocitos/inmunología , Homeostasis/inmunología , Humanos , Inmunidad Innata , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Macrófagos/microbiología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/microbiología , Piel/inmunología , Piel/microbiología
15.
J Phys Chem Lett ; 11(17): 7133-7140, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32787334

RESUMEN

Using a combination of density-gradient and analytical ultracentrifugation, we studied the photophysical profile of CsPbBr3 nanocrystal (NC) suspensions by separating them into size-resolved fractions. Ultracentrifugation drastically alters the ligand profile of the NCs, which necessitates postprocessing to restore colloidal stability and enhance quantum yield (QY). Rejuvenated fractions show a 50% increase in QY compared to no treatment and a 30% increase with respect to the parent. Our results demonstrate how the NC environment can be manipulated to improve photophysical performance, even after there has been a measurable decline in the response. Size separation reveals blue-emitting fractions, a narrowing of photoluminescence spectra in comparison to the parent, and a crossover from single- to stretched-exponential relaxation dynamics with decreasing NC size. As a function of edge length, L, our results confirm that the photoluminescence peak energy scales a L-2, in agreement with the simplest picture of quantum confinement.

16.
Elife ; 92020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32639232

RESUMEN

Staphylococcus aureus (S. aureus) is a common colonizer of healthy skin and mucous membranes. At the same time, S. aureus is the most frequent cause of skin and soft tissue infections. Dermal macrophages (Mφ) are critical for the coordinated defense against invading S. aureus, yet they have a limited life span with replacement by bone marrow derived monocytes. It is currently poorly understood whether localized S. aureus skin infections persistently alter the resident Mφ subset composition and resistance to a subsequent infection. In a strictly dermal infection model we found that mice, which were previously infected with S. aureus, showed faster monocyte recruitment, increased bacterial killing and improved healing upon a secondary infection. However, skin infection decreased Mφ half-life, thereby limiting the duration of memory. In summary, resident dermal Mφ are programmed locally, independently of bone marrow-derived monocytes during staphylococcal skin infection leading to transiently increased resistance against a second infection.


Asunto(s)
Inmunidad Innata , Memoria Inmunológica , Macrófagos/inmunología , Infecciones Cutáneas Estafilocócicas/inmunología , Staphylococcus aureus/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Monocitos/inmunología , Infecciones Cutáneas Estafilocócicas/microbiología
17.
J Phys Chem Lett ; 11(13): 4937-4944, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32482071

RESUMEN

Size-dependent photoluminescence Stokes shifts (ΔEs) universally exist in CsPbX3 (X = Cl-, Br-, or I-) perovskite nanocrystals (NCs). ΔEs values, which range from ∼15 to 100 meV for NCs with average edge lengths (l) from approximately 13 to 3 nm, are halide-dependent such that ΔEs(CsPbI3) > ΔEs(CsPbBr3) ≳ ΔEs(CsPbCl3). Observed size-dependent Stokes shifts are not artifacts of ensemble size distributions as demonstrated through measurements of single CsPbBr3 NC Stokes shifts (⟨ΔEs⟩ = 42 ± 5 meV), which are in near quantitative agreement with associated ensemble (l = 6.8 ± 0.8 nm) ΔEs values (ΔEs ≈ 50 meV). Transient differential absorption measurements additionally illustrate no significant spectral dynamics on the picosecond time scale that would contribute to ΔEs. This excludes polaron formation as being responsible for ΔEs. Altogether, the results point to an origin for ΔEs, intrinsic to the size-dependent electronic properties of individual perovskite NCs.

18.
J Am Chem Soc ; 141(10): 4388-4397, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30712348

RESUMEN

Fully inorganic lead halide perovskite nanocrystals (NCs) are of interest for photovoltaic and light-emitting devices due to optoelectronic properties that can be tuned/optimized via halide composition, surface passivation, doping, and confinement. Compared to bulk materials, certain excited-state properties in NCs can be adjusted by electronic confinement effects such as suppressed hot carrier cooling and enhanced radiative recombination. Here we use spinor Kohn-Sham orbitals (SKSOs) with spin-orbit coupling (SOC) interaction as a basis to compute excited-state dissipative dynamics simulations on a fully passivated CsPbBr3 NC atomistic model. Redfield theory in the density matrix formalism is used to describe electron-phonon interactions which drive hot carrier cooling and nonradiative recombination ( knonrad). Radiative recombination ( krad) is calculated through oscillator strengths using SKSO basis. From krad and krad + knonrad, we compute a theoretical photoluminescence quantum yield (PLQY) of 53%. Computed rates of hot carrier cooling ( kcooling ≈ 10-1 1/ps) compare favorably with what has been reported in the literature. Interestingly, we observe that hot electron cooling slows down near the band edge, which we attribute to large SOC in the conduction band combined with strong confinement, which creates subgaps above the band edge. This slow carrier cooling could potentially impact hot carrier extraction before complete thermalization in photovoltaics (PVs). Implications of this work suggest that strong/intermediate confined APbX3 NCs are better suited to applications in PVs due to slower carrier cooling near the conduction band edge, while intermediate/weak confined NCs are more appropriate for light-emitting applications, such as LEDs.

19.
Front Microbiol ; 8: 1429, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824563

RESUMEN

The Corynebacterium glutamicum ATCC 13032 prophage CGP3 encodes an actin-like protein, AlpC that was shown to be involved in viral DNA transport and efficient viral DNA replication. AlpC binds to an adapter, AlpA that in turn binds to specific DNA sequences, termed alpS sites. Thus, the AlpAC system is similar to the known plasmid segregation system ParMRS. So far it is unclear how the AlpACS system mediates DNA transport and, whether AlpA and AlpC functionally interact. We show here that AlpA modulates AlpC filamentation dynamics in a dual way. Unbound AlpA stimulates AlpC filament disassembly, while AlpA bound to alpS sites allows for AlpC filament formation. Based on these results we propose a simple search and capture model that explains DNA segregation by viral AlpACS DNA segregation system.

20.
Mol Cancer Ther ; 13(5): 1231-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24659821

RESUMEN

Overexpression of the CXCR4 receptor is a hallmark of chronic lymphocytic leukemia (CLL) and is important for CLL cell survival, migration, and interaction with their protective microenvironment. In acute myelogenous leukemia (AML), PIM1 was shown to regulate the surface expression of the CXCR4 receptor. Here, we show that PIM (proviral integration site for Moloney murine leukemia virus) kinases 1-3 are overexpressed and that the CXCR4 receptor is hyperphosphorylated on Ser339 in CLL compared with normal lymphocytes. Furthermore, CXCR4 phosphorylation correlates with PIM1 protein expression and PIM1 transcript levels in CLL. PIM kinase inhibition with three different PIM kinase inhibitors induced apoptosis in CLL cells independent of the presence of protective stromal cells. In addition, PIM inhibition caused dephosphorylation of the CXCR4 receptor on Ser339, resulting in enhanced ligand-dependent CXCR4 internalization and reduced re-externalization after withdrawal of CXCL12. Furthermore, PIM inhibition in CLL cells blocked CXCR4 functions, such as migration toward CXCL12- or CXCL12-induced extracellular signal-regulated kinase (ERK) phosphorylation. In concordance, pretreatment of CLL cells with PIM kinase inhibitors strongly reduced homing of CLL cells toward the bone marrow and the spleen of Rag2(-/-)γc(-/-) mice in vivo. Interestingly, the knockdown of PIM kinases in CLL cells demonstrated diverging functions, with PIM1 regulating CXCR4 surface expression and PIM2 and PIM3 as important for the survival of CLL cells. Our results show that PIM kinase inhibitors are an effective therapeutic option for CLL, not only by impairing PIM2/3-mediated CLL cell survival, but also by blocking the PIM1/CXCR4-mediated interaction of CLL cells with their protective microenvironment.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Receptores CXCR4/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Médula Ósea/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/genética , ARN Interferente Pequeño/genética , Bazo/metabolismo , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...