Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1090026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760648

RESUMEN

Introduction: In the last decade, it has been discovered that allergen-bearing extracellular nanovesicles, termed "pollensomes", are released by pollen during germination. These extracellular vesicles (EVs) may play an important role in pollen-pistil interaction during fertilization, stabilizing the secreted bioactive molecules and allowing long-distance signaling. However, the molecular composition and the biological role of these EVs are still unclear. The present study had two main aims: (I) to clarify whether pollen germination is needed to release pollensomes, or if they can be secreted also in high humidity conditions; and (II) to investigate the molecular features of pollensomes following the most recent guidelines for EVs isolation and identification. Methods: To do so, pollensomes were isolated from hydrated and germinated kiwi (Actinidia chinensis Planch.) pollen, and characterized using imaging techniques, immunoblotting, and proteomics. Results: These analyses revealed that only germinated kiwi pollen released detectable concentrations of nanoparticles compatible with small EVs for shape and protein content. Moreover, a plant homolog of ALIX, which is a well-recognized and accepted marker of small EVs and exosomes in mammals, was found in pollensomes. Discussion: The presence of this protein, along with other proteins involved in endocytosis, is consistent with the hypothesis that pollensomes could comprehend a prominent subpopulation of plant exosome-like vesicles.

2.
Sci Rep ; 10(1): 2767, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066745

RESUMEN

Current therapeutic strategies for Parkinson's disease (PD) aim to delay progression or replace damaged neurons by restoring the original neuronal structures. The poor regenerative capacity of neural tissue highlights the need for the development of cellular environments to model the pathogenesis of PD. In the current work, we have characterised the growth, survival and response to PD mimetics of human SH-SY5Y neuroblastoma and U-87MG glioblastoma cell lines cultured on polyacrylonitrile (PAN) and Jeffamine® doped polyacrylonitrile (PJ) nano-scaffolds. Differentiation induced by a range of agents was evaluated by immunoassays of neural protein biomarkers. PAN and PJ nanofibre scaffolds provided suitable three-dimensional (3D) environment to support the growth, differentiation and network formation of dopaminergic neuron- and astrocyte-like cell populations, respectively. The scaffolds selectively supported the survival and differentiation of both cell populations with prolonged neuronal survival when exposed to PD mimetics in the presence of astrocytes in a co-culture model. Such 3D nanoscaffold-based assays could aid our understanding of the molecular basis of PD mimetic-induced Parkinsonism and the discovery of neuroprotective agents.


Asunto(s)
Resinas Acrílicas/farmacología , Degeneración Nerviosa/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Astrocitos/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Humanos , Nanofibras/química , Degeneración Nerviosa/patología , Fármacos Neuroprotectores/química , Oxidopamina/farmacología , Enfermedad de Parkinson/patología , Andamios del Tejido
3.
J Colloid Interface Sci ; 453: 252-259, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25989056

RESUMEN

We demonstrate in this work the deposition of a large biological molecule (fibronectin) on polymeric substrates in a high vacuum environment using an electrospray deposition system. Fibronectin was deposited and its distribution and structure investigated and retention of function (ability to promote cell adhesion) on return to liquid environment is shown. AFM was used to monitor changes in the morphology of the surface before and after fibronectin deposition, whilst the biological activity of the deposited protein is assessed through a quantitative analysis of the biomolecular adhesion and migration of fibroblast cells to the modified surfaces. For the first time we have demonstrated that using high vacuum electrospray deposition it is possible to deposit large protein molecules on polymeric surfaces whilst maintaining the protein activity. The deposition of biological molecules such as proteins with the retention of their activity onto clean well-controlled surfaces under vacuum condition, offers the possibility for future studies utilizing high resolution vacuum based techniques at the atomic and molecular scale providing a greater understanding of protein-surface interface behaviour of relevance to a wide range of applications such as in sensors, diagnostics and tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Fibronectinas/química , Proteínas Inmovilizadas/química , Animales , Materiales Biocompatibles/metabolismo , Adhesión Celular , Movimiento Celular , Fibroblastos/citología , Proteínas Inmovilizadas/metabolismo , Ratones , Células 3T3 NIH , Polímeros/química , Propiedades de Superficie , Vacio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...