Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell ; 186(19): 4172-4188.e18, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37633267

RESUMEN

Selective clearance of organelles, including endoplasmic reticulum (ER) and mitochondria, by autophagy plays an important role in cell health. Here, we describe a developmentally programmed selective ER clearance by autophagy. We show that Parkinson's disease-associated PINK1, as well as Atl, Rtnl1, and Trp1 receptors, regulate ER clearance by autophagy. The E3 ubiquitin ligase Parkin functions downstream of PINK1 and is required for mitochondrial clearance while having the opposite function in ER clearance. By contrast, Keap1 and the E3 ubiquitin ligase Cullin3 function downstream of PINK1 to regulate ER clearance by influencing Rtnl1 and Atl. PINK1 regulates a change in Keap1 localization and Keap1-dependent ubiquitylation of the ER-phagy receptor Rtnl1 to facilitate ER clearance. Thus, PINK1 regulates the selective clearance of ER and mitochondria by influencing the balance of Keap1- and Parkin-dependent ubiquitylation of substrates that determine which organelle is removed by autophagy.


Asunto(s)
Retículo Endoplásmico , Factor 2 Relacionado con NF-E2 , Retículo Endoplásmico/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Drosophila melanogaster , Animales
2.
Cell Death Differ ; 29(11): 2275-2287, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35523956

RESUMEN

Autophagy targets cytoplasmic materials for degradation, and influences cell health. Alterations in Atg6/Beclin-1, a key regulator of autophagy, are associated with multiple diseases. While the role of Atg6 in autophagy regulation is heavily studied, the role of Atg6 in organism health and disease progression remains poorly understood. Here, we discover that loss of Atg6 in Drosophila results in various alterations to stress, metabolic and immune signaling pathways. We find that the increased levels of circulating blood cells and tumor-like masses in atg6 mutants vary depending on tissue-specific function of Atg6, with contributions from intestine and hematopoietic cells. These phenotypes are suppressed by decreased function of macrophage and inflammatory response receptors crq and drpr. Thus, these findings provide a basis for understanding how Atg6 systemically regulates cell health within multiple organs, and highlight the importance of Atg6 in inflammation to organismal health.


Asunto(s)
Autofagia , Transducción de Señal , Humanos , Beclina-1/metabolismo , Autofagia/genética , Inflamación
3.
Curr Biol ; 32(6): 1262-1274.e4, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35134326

RESUMEN

Autophagy targets cytoplasmic materials for degradation and influences cell health. Organelle contact and trafficking systems provide membranes for autophagosome formation, but how different membrane systems are selected for use during autophagy remains unclear. Here, we report a novel function of the endosomal sorting complex required for transport (ESCRT) in the regulation of endoplasmic reticulum (ER) coat protein complex II (COPII) vesicle formation that influences autophagy. The ESCRT functions in a pathway upstream of Vps13D to influence COPII vesicle transport, ER-Golgi intermediate compartment (ERGIC) assembly, and autophagosome formation. Atg9 functions downstream of the ESCRT to facilitate ERGIC and autophagosome formation. Interestingly, cells lacking either ESCRT or Vps13D functions exhibit dilated ER structures that are similar to cranio-lenticulo-sutural dysplasia patient cells with SEC23A mutations, which encodes a component of COPII vesicles. Our data reveal a novel ESCRT-dependent pathway that influences the ERGIC and autophagosome formation.


Asunto(s)
Autofagosomas , Proteínas de Drosophila , Animales , Autofagosomas/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Proteínas/metabolismo
4.
J Cell Biol ; 220(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459871

RESUMEN

Defects in autophagy cause problems in metabolism, development, and disease. The autophagic clearance of mitochondria, mitophagy, is impaired by the loss of Vps13D. Here, we discover that Vps13D regulates mitophagy in a pathway that depends on the core autophagy machinery by regulating Atg8a and ubiquitin localization. This process is Pink1 dependent, with loss of pink1 having similar autophagy and mitochondrial defects as loss of vps13d. The role of Pink1 has largely been studied in tandem with Park/Parkin, an E3 ubiquitin ligase that is widely considered to be crucial in Pink1-dependent mitophagy. Surprisingly, we find that loss of park does not exhibit the same autophagy and mitochondrial deficiencies as vps13d and pink1 mutant cells and contributes to mitochondrial clearance through a pathway that is parallel to vps13d. These findings provide a Park-independent pathway for Pink1-regulated mitophagy and help to explain how Vps13D regulates autophagy and mitochondrial morphology and contributes to neurodegenerative diseases.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitofagia/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Autofagia/fisiología , Mitocondrias/metabolismo , Ubiquitina/metabolismo
5.
Curr Biol ; 31(14): 3028-3039.e7, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34019822

RESUMEN

Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Autofagia/genética , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Tamaño Mitocondrial , Proteínas/metabolismo
6.
J Cell Biol ; 219(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32915229

RESUMEN

Macroautophagy (autophagy) targets cytoplasmic cargoes to the lysosome for degradation. Like all vesicle trafficking, autophagy relies on phosphoinositide identity, concentration, and localization to execute multiple steps in this catabolic process. Here, we screen for phosphoinositide phosphatases that influence autophagy in Drosophila and identify CG3530. CG3530 is homologous to the human MTMR6 subfamily of myotubularin-related 3-phosphatases, and therefore, we named it dMtmr6. dMtmr6, which is required for development and viability in Drosophila, functions as a regulator of autophagic flux in multiple Drosophila cell types. The MTMR6 family member MTMR8 has a similar function in autophagy of higher animal cells. Decreased dMtmr6 and MTMR8 function results in autophagic vesicle accumulation and influences endolysosomal homeostasis.


Asunto(s)
Autofagia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endocitosis , Femenino , Masculino , Fagocitosis , Transporte de Proteínas , Proteínas Tirosina Fosfatasas no Receptoras/genética , Homología de Secuencia
7.
Curr Biol ; 28(19): 3056-3064.e3, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30270184

RESUMEN

Adult stem cells usually reside in specialized niche microenvironments. Accumulating evidence indicates that competitive niche occupancy favors stem cells with oncogenic mutations, also known as tumor-like stem cells. However, the mechanisms that regulate tumor-like stem cell niche occupancy are largely unknown. Here, we use Drosophila ovarian germline stem cells as a model and use bam mutant cells as tumor-like stem cells. Interestingly, we find that autophagy is low in wild-type stem cells but elevated in bam mutant stem cells. Significantly, autophagy is required for niche occupancy by bam mutant stem cells. Although loss of either atg6 or Fip200 alone in stem cells does not impact their competitiveness, loss of these conserved regulators of autophagy decreases bam mutant stem cell niche occupancy. In addition, starvation enhances the competition of bam mutant stem cells for niche occupancy in an autophagy-dependent manner. Of note, loss of autophagy slows the cell cycle of bam mutant stem cells and does not influence stem cell death. In contrast to canonical epithelial cell competition, loss of regulators of tissue growth, either the insulin receptor or cyclin-dependent kinase 2 function, influences the competition of bam mutant stem cells for niche occupancy. Additionally, autophagy promotes the tumor-like growth of bam mutant ovaries. Autophagy is known to be induced in a wide variety of tumors. Therefore, these results suggest that specifically targeting autophagy in tumor-like stem cells has potential as a therapeutic strategy.


Asunto(s)
Autofagia/fisiología , Nicho de Células Madre/genética , Nicho de Células Madre/fisiología , Células Madre Adultas/fisiología , Animales , Beclina-1/genética , Beclina-1/metabolismo , Diferenciación Celular/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Células Germinativas/metabolismo , Neoplasias/genética , Ovario/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología , Células Madre/fisiología , Microambiente Tumoral/genética
8.
Dev Dyn ; 235(8): 2248-59, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16732586

RESUMEN

The Drosophila how gene encodes a KH RNA binding protein with strong similarity to GLD-1 from nematodes and QK1 from mice. Here, we investigate the function of how during metamorphosis. We show that how RNA and protein are present in a variety of tissues, and phenotypic analyses of how mutants reveal multiple lethal phases and defects during metamorphosis. In addition to previously reported abnormalities in muscle and wing development, how mutants exhibit defects in leg development. how mutant leg imaginal discs undergo cell shape changes associated with elongation, but are oriented improperly, do not evert normally, and often remain incased in peripodial epithelium longer than normal. Consequently, how mutants exhibit short, crooked legs. Our findings suggest that how functions in interactions between imaginal epithelium, peripodial epithelium, and larval epidermal cells during imaginal disc eversion.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Extremidades/crecimiento & desarrollo , Metamorfosis Biológica , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Letales/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Mutación/genética , Fenotipo , ARN/genética
9.
Dev Biol ; 257(1): 153-65, 2003 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12710964

RESUMEN

In Drosophila melanogaster, fluctuations in 20-hydroxyecdysone (ecdysone) titer coordinate gene expression, cell death, and morphogenesis during metamorphosis. Our previous studies have supported the hypothesis that betaFTZ-F1 (an orphan nuclear receptor) provides specific genes with the competence to be induced by ecdysone at the appropriate time, thus directing key developmental events at the prepupal-pupal transition. We are examining the role of betaFTZ-F1 in morphogenesis. We have made a detailed study of morphogenetic events during metamorphosis in control and betaFTZ-F1 mutant animals. We show that leg development in betaFTZ-F1 mutants proceeds normally until the prepupal-pupal transition, when final leg elongation is delayed by several hours and significantly reduced in the mutants. We also show that betaFTZ-F1 mutants fail to fully extend their wings and to shorten their bodies at the prepupal-pupal transition. We find that betaFTZ-F1 mutants are unable to properly perform the muscle contractions that drive these processes. Several defects can be rescued by subjecting the mutants to a drop in pressure during the normal time of the prepupal-pupal transition. Our findings indicate that betaFTZ-F1 directs the muscle contraction events that drive the major morphogenetic processes during the prepupal-pupal transition in Drosophila.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Metamorfosis Biológica/fisiología , Desarrollo de Músculos/fisiología , Pupa/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila , Extremidades/crecimiento & desarrollo , Factores de Transcripción Fushi Tarazu , Proteínas de Homeodominio , Proteínas de Insectos , Mutación , Receptores Citoplasmáticos y Nucleares , Factor Esteroidogénico 1 , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA