Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38869552

RESUMEN

Recently, nanoparticles have been widely used in agricultural pest control as a secure substitute for pesticides. However, the effect of nanoparticles on controlling the subterranean termite Odontotermes formosanus (O. formosanus) has not been studied yet. Consequently, this study aimed to evaluate the effectiveness of some nanomaterials in controlling O. formosanus. The results showed that zinc oxide nanoparticles (ZnONPs), titanium dioxide nanoparticles (TiO2NPs), and chitosan nanoparticles (CsNPs) biosynthesized using the culture filtrate of Scedosporium apiospermum (S. apiospermum) had an effective role in controlling O. formosanus. Moreover, the mortality rate of O. formosanus after 48 h of treatment with ZnONPs, TiO2NPs, and CsNPs at a 1000 µg/mL concentration was 100%, 100%, and 97.67%, respectively. Furthermore, using ZnONPs, TiO2NPs, and CsNPs on O. formosanus resulted in morpho-histological variations in the normal structure, leading to its death. X-ray diffraction, UV-vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic light scattering, energy dispersive spectroscopy, and the Zeta potential were used to characterize the biosynthesis of ZnONPs, TiO2NPs, and CsNPs with strong activity against O. formosanus termites. Overall, the results of this investigation suggest that biosynthesized ZnONPs, TiO2NPs, and CsNPs have enormous potential for use as innovative, ecologically safe pesticides for O. formosanus control.

2.
Front Plant Sci ; 14: 1292272, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259939

RESUMEN

Recently, the use of nanopesticides has shown significant efficacy in the control of many pests. However, the effect of nanopesticides, especially nanoemulsions, on suppressing termites, Odontotermes formosanus (Shiraki, 1909) (O. formosanus), has not been studied yet. Therefore, this study aimed to produce nanoemulsions of the essential oils of eucalyptus (Eucalyptus globulus Labill; E-EO) and nutmeg (Myristica fragrans Houtt; N-EO) to suppress O. formosanus. The analysis of eucalyptus nanoemulsion (E-NE) and nutmeg nanoemulsion (N-NE) was confirmed by using UV-Vis, dynamic light scattering, zeta potential, transmission electron microscopy, scanning electron microscopy, and energy dispersive spectroscopy. In addition, chemical analysis by Gas Chromatography with a mass spectrometer (GC-MS) exhibited the major constituents of E-NE and N-NE. The principal chemical components of E-NE included D-limonene, eucalyptol, 1,5-cyclooctadiene,3,4-dimethyl, benzene, and 1-methyl-3-(1 methylethyl)-, while the main constituents in N-NE were cyclohexane,1-methylene-4-(1 methylethenyl)-, eucalyptol, and L-. alpha. -terpineol. The mortality rates were 100% and 99.53%, respectively, after 24 hours of treatment with a concentration of 140 mg/mL, compared to 23.43% and 43.55%, respectively, from E-EO and N-EO treatment. These results refer to the essential oils' nanoemulsion as far more effective than the essential oils themselves. Furthermore, the effects of E-NE and N-NE on detoxification enzymes such as acetylcholinesterase, carboxylesterase, acid and alkaline phosphatase were investigated, as well as total protein concentrations, and the results have been found to be significantly increasing or decreasing in comparison with control. Besides, histological and morphological alterations found post exposure to E-NE and N-NE were shown. Overall, the results from this study clearly indicate that the nanopesticide-formulated nanoemulsions may have great potential to be used as novel, environmentally safe insecticides for controlling O. formosanus.

3.
J Nanobiotechnology ; 19(1): 318, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645452

RESUMEN

BACKGROUND: Despite developments in nanotechnology for use in the pharmaceutical field, there is still a need for implementation of this technology in agrochemistry. In this study, silver nanoparticles (AgNPs) were successfully prepared by a facile and an eco-friendly route using two different ligands, 2'-amino-1,1':4',1″-terphenyl-3,3″,5,5″-tetracarboxylic acid (H4L) and 1,3,6,8-tetrakis (p-benzoic acid)-pyrene (TBAPy), as reducing agents. The physiochemical properties of the as-obtained AgNPs were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The toxicity of H4L-AgNP and TBAPy-AgNP against the brown planthopper (BPH, Nilaparvata lugens) was also measured. RESULTS: SEM and TEM analyses demonstrated the formation of quasi-spherical AgNP structures in the presence of H4L and TBAPy. Insecticidal assays showed that TBAPy is less effective against N. lugens, with a median lethal concentration (LC50) of 810 mg/L, while the toxicity of H4L increased and their LC50 reached 786 mg/L 168 h posttreatment at a high concentration of 2000 mg/L. H4L-AgNPs were also highly toxic at a low concentration of 20 mg/L, with LC50 = ~ 3.9 mg/L 168 h posttreatment, while TBAPy-AgNPs exhibited less toxicity at the same concentration, with LC50 = ~ 4.6 mg/L. CONCLUSIONS: These results suggest that the synthesized AgNPs using the two ligands may be a safe and cheaper method compared with chemical insecticides for protection of rice plants from pests and has potential as an effective insecticide in the N. lugens pest management program.


Asunto(s)
Tecnología Química Verde/métodos , Hemípteros/efectos de los fármacos , Insecticidas , Nanopartículas del Metal , Plata , Animales , Femenino , Insecticidas/química , Insecticidas/farmacología , Insecticidas/toxicidad , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Nanotecnología , Plata/química , Plata/farmacología , Plata/toxicidad , Pruebas de Toxicidad
4.
Insect Sci ; 28(1): 2-20, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31529680

RESUMEN

Termites are eusocial arthropod decomposers, and improve soil fertility, crop yield, and also are used by humans for their benefits across the world. However, some species of termites are becoming a threat to the farming community as they are directly and indirectly causing major losses to the agricultural system. It is estimated that termites cost the global economy more than 40 billion USD annually, and considerable research has been done on their management. In this review, we present the available information related to sustainable and integrated termite management practices (ITM). Furthermore, we insist that the better management of this menace can be possible through: (i) improving traditional methods to keep termites away from crops; (ii) improving agricultural practices to maintain plants with more vigor and less susceptible to termite attack; and (iii) integration of available techniques to reduce termite infestation in crops and surroundings. The application of an effective combination of traditional practices with recently developed approaches is the best option for agricultural growers. Moreover, keeping in mind the beneficial nature of this pest, more innovative efforts for its management, particularly using rapidly emerging technology (e.g., RNA interference), are needed.


Asunto(s)
Agricultura , Control de Insectos/métodos , Isópteros , Animales , China
5.
Molecules ; 25(20)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086640

RESUMEN

Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating diseases, resulting in significant yield losses in rice. The extensive use of chemical antibacterial agents has led to an increase the environmental toxicity. Nanotechnology products are being developed as a promising alternative to control plant disease with low environmental impact. In the present study, we investigated the antibacterial activity of biosynthesized chitosan nanoparticles (CSNPs) and zinc oxide nanoparticles (ZnONPs) against rice pathogen Xoo. The formation of CSNPs and ZnONPs in the reaction mixture was confirmed by using UV-vis spectroscopy at 300-550 nm. Moreover, CSNPs and ZnONPs with strong antibacterial activity against Xoo were further characterized by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. Compared with the corresponding chitosan and ZnO alone, CSNPs and ZnONPs showed greater inhibition in the growth of Xoo, which may be mainly attributed to the reduction in biofilm formation and swimming, cell membrane damage, reactive oxygen species production, and apoptosis of bacterial cells. Overall, this study revealed that the two biosynthesized nanoparticles, particularly CSNPs, are a promising alternative to control rice bacterial disease.


Asunto(s)
Quitosano/farmacología , Nanopartículas/química , Xanthomonas/efectos de los fármacos , Óxido de Zinc/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Quitosano/síntesis química , Quitosano/química , Humanos , Oryza/microbiología , Xanthomonas/patogenicidad , Óxido de Zinc/síntesis química , Óxido de Zinc/química
6.
Appl Biochem Biotechnol ; 192(4): 1270-1283, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32720080

RESUMEN

Termitomyces fungi associated with fungus-growing termites are the edible mushrooms and can produce useful chemicals, enzymes, and volatile organic compounds (VOCs) that have both fuel and biological potentials. To this purpose, we examined the Termitomyces mycelial growth performance on various substrates, clarified lignocellulose-degrading enzyme activity, and also identified the VOCs produced by Termitomyces. Our results indicated that the optimal nutrition and condition requirements for mycelial growth are D-sorbitol, D-(+)-glucose, and D-(-)-fructose as carbon sources; peptone as well as yeast extract and ammonium tartrate as nitrogen sources; and Mn2+, Na+, and Mg2+ as metal ions with pH range from 7.0 to 8.0. Besides, the orthogonal matrix method results revealed that the ideal composition for mycelial growth is 20 g/L D-(-)-fructose, 5 g/L yeast extract, 0.5 g/L Mg2+, and pH = 7. We also screened various substrates composition for the activity of lignocellulose-degrading enzymes, i.e., lignin peroxidase, manganese peroxidase, ß-glucosidase, a-L-arabinofuranosidase, and laccase. Furthermore, we identified 37 VOCs using GC-MS, and the most striking aspect was the presence of a big series of alcohols and acids, collectively constituted about 49% of the total VOCs. Ergosta-5, 8, 22-trien-3-ol, (3.beta.,22E) was the most plenteous compound constituted 30.369%. This study hopes to establish a better understanding for researchers regarding Termitomyces heimii cultivation on a large scale for the production of lignocellulosic enzymes and some fungal medicine.


Asunto(s)
Enzimas/metabolismo , Isópteros/microbiología , Lignina/metabolismo , Termitomyces/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Enzimas/biosíntesis , Concentración de Iones de Hidrógeno , Micelio/crecimiento & desarrollo , Termitomyces/fisiología
7.
Biomed Res Int ; 2019: 5620989, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906776

RESUMEN

Recently, the use of herbs in the agriculture and food industry has increased significantly. In particular, Rosmarinus officinalis L. extracts have been reported to have strong antibacterial properties, which depend on their chemical composition. The present study displayed a biological method for synthesis of magnesium oxide (MgO) nano-flowers. The nano-flowers are developed without using any catalyst agent. Aqueous Rosemary extract was used to synthesize MgO nano-flowers (MgONFs) in stirring conditions and temperature at 70°C for 4 h. The mixture solution was checked by UV-Vis spectrum to confirm the presence of nanoparticles. The MgO nano-flowers powder was further characterized in this study by the X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. In addition, bacteriological tests indicated that MgO nano-flowers significantly inhibited bacterial growth, biofilm formation, and motility of Xanthomonas oryzae pv. oryzae, which is the causal agent of bacterial blight disease in rice. The electronic microscopic observation showed that bacterial cell death may be mainly due to destroy of cell integrity, resulting in leakage of intracellular content. As recommended, the use of Rosemary extract is an effective and green way to produce the MgO nano-flowers, which can be widely used in agricultural fields to suppress bacterial infection.


Asunto(s)
Antibacterianos , Óxido de Magnesio , Nanopartículas/química , Extractos Vegetales/química , Rosmarinus/química , Xanthomonas/crecimiento & desarrollo , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Óxido de Magnesio/química , Óxido de Magnesio/farmacología
8.
Artif Cells Nanomed Biotechnol ; 47(1): 341-352, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30691311

RESUMEN

The synthesis of metal oxide nanoparticles with the use of plant extract is a promising alternative to the conventional chemical method. This work aimed to synthesize zinc oxide nanoparticles (ZnONPs) using plant extract of chamomile flower (Matricaria chamomilla L.), olive leave (Olea europaea) and red tomato fruit (Lycopersicon esculentum M.). The synthesized ZnONPs were characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with EDS profile. The XRD studies confirmed the presence of pure crystalline shapes of ZnO nanoparticles. The ZnONPs synthesized by Olea europaea had the least size range of 40.5 to 124.0 nm as revealed by the SEM observation while XRD revealed a dominant average size of 48.2 nm in the sample which is similar to the size distribution analysis obtained from TEM. The antibacterial effect of ZnONPs synthesized by Olea europaea on Xanthomonas oryzae pv. oryzae (Xoo) strain GZ 0003 had an inhibition zone of 2.2 cm at 16.0 µg/ml which was significantly different from ZnONPs synthesized by Matricaria chamomilla and Lycopersicon esculentum. Also, the bacterial growth, biofilm formation, swimming motility and bacterial cell membrane of Xoo strain GZ 0003 were significantly affected by ZnO nanoparticle. Overall, zinc oxide nanoparticles are promising biocontrol agents that can be used to combat bacterial leaf blight diseases of rice.


Asunto(s)
Nanopartículas/química , Nanotecnología , Extractos Vegetales/química , Xanthomonas/efectos de los fármacos , Óxido de Zinc/química , Óxido de Zinc/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Tecnología Química Verde , Pruebas de Sensibilidad Microbiana , Óxido de Zinc/síntesis química
9.
RSC Adv ; 9(50): 29293-29299, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35528426

RESUMEN

The biosynthesis of silver nanoparticles (AgNPs) through the use of endophytic bacteria is a safe replacement for the chemical method. The study aimed to synthesize AgNPs using endophytic bacterium Bacillus siamensis strain C1, which was isolated from the medicinal plant Coriandrum sativum. The synthesized AgNPs with the size of 25 to 50 nm were further confirmed and characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy with EDS profile. The synthesized AgNPs at 20 µg mL-1 showed a strong antibacterial effect against the pathogen of rice bacterial leaf blight and bacterial brown stripe, while an inhibition zone of 17.3 and 16.0 mm was observed for Xanthomonas oryzae pv. oryzae (Xoo) strain LND0005 and Acidovorax oryzae (Ao) strain RS-1, respectively. Furthermore, the synthesized AgNPs significantly inhibited bacterial growth, biofilm formation and swimming motility of Xoo strain LND0005 and Ao strain RS-1. In addition, the synthesized AgNPs significantly increased root length, shoot length, fresh weight and dry weight of rice seedlings compared to the control. Overall, this study suggests that AgNPs have the potential to protect rice plants from bacterial infection and plant growth promotion.

10.
J Med Entomol ; 55(4): 787-794, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29566214

RESUMEN

Efforts to develop mosquito attractants using vertebrate host volatiles have been well made under laboratory conditions but their attractiveness to mosquitoes in the wild still needs to be evaluated. In the present study, we evaluated the attraction of female Culex pipiens pallens Coquillett (Diptera: Culicidae) to 11 individual chemical compounds found in vertebrate host odors, and to synthetic blends, consisting of different combinations of the compounds. These tests were conducted under laboratory and field conditions using a Y-tube olfactometer and odor-baited traps, respectively. When delivered at concentrations ranging from 0.1 to 10.0 µg/kg, 9 of the 11 compounds were attractive to female mosquitoes under laboratory conditions. We developed 47 synthetic blends composed of the 6 most attractive compounds (propionic acid, hexanal, myristic acid, benzaldehyde, 1-octen-3-ol, and geranyl acetone) and 18 of them were significantly attractive to mosquitoes in the olfactometer. Most of the attractive blends contained two to four attractive compounds. In the field, 5 of the 18 blends captured significantly more mosquitoes than did control traps. The findings demonstrate that female mosquitoes can be attracted by single chemical compounds as well as some of their synthetic blends. The effectiveness of synthetic blends depended on specific combinations of several compounds, rather than simply increasing the number of attractive compounds in the blends. Synthetic blends may have potential for use in odor-baited traps for mosquito surveillance.


Asunto(s)
Quimiotaxis , Culex/fisiología , Control de Mosquitos/métodos , Odorantes , Animales , Femenino , Olfatometría
11.
Pestic Biochem Physiol ; 144: 49-56, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29463408

RESUMEN

Silver nanoparticles have been studied in a wide range of medical and entomological research works due to their eco-friendly aspects. In our study salicylic acid (SA) and its derivative, 3,5-dinitrosalicylic acid (DNS), were used in a one-step synthesis of silver nanoparticles (AgNPs). First, UV-vis absorption spectroscopy was used to detect the formation of AgNPs. Second, the synthesized nanoparticles were characterized using scanning electron microscope, transmission electron microscope; energy-dispersive spectroscopy, X-ray diffraction analysis and Fourier transform infrared spectroscopy. I, II, III and IV Instar larvae and pupae of Ae. Albopictus were exposed to various concentrations of SA, DNS and synthesized AgNPs for 24h to evaluate the larvicidal and pupicidal effect. In larvicidal bioassay of SA, moderate mortality was observed at 180ppm against Ae. Albopictus with LC50 values of 86, 108, 135 and 141ppm for instar larvae I, II, III and IV, respectively. Synthesized AgNPs showed highest mortality rate at 12ppm and the LC50 values of SAAgNPs were 1.2ppm (I), 1.4ppm (II), 1.8ppm (III), 2.0ppm (IV) and 1.4ppm (pupae). Whereas LC50 values of DNSAgNPs were 1.2ppm (I), 1.5ppm (II), 1.8ppm (III) 2.3ppm (IV) and 1.4ppm (pupae). Moreover, the investigations toward the systemic effect of the tested substances on the fourth instar larvae of Ae. albopictus was evaluated and the levels of total proteins, esterases, acetylcholine esterase, and phosphatase enzymes were found to be significantly decreased as compared with the control. These results highlight that SA-AgNPs and DNS-AgNPs are potential tools to control larval populations of mosquito.


Asunto(s)
Aedes/efectos de los fármacos , Larva/efectos de los fármacos , Nanopartículas del Metal/química , Plata/química , Aedes/enzimología , Aedes/crecimiento & desarrollo , Animales , Bioensayo , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Nanopartículas del Metal/toxicidad , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Análisis Espectral/métodos , Difracción de Rayos X
12.
Artif Cells Nanomed Biotechnol ; 46(6): 1171-1179, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28859534

RESUMEN

Mosquitoes pose a threat to humans and animals, causing millions of deaths every year. Vector control by effective eco-friendly pesticides of natural origin is a serious issue that requires urgent attention. The employment of green-reducing extracts for nanoparticles biosynthesis in a rapid and single-step process represents a promising strategy. In this study, silver nanoparticles (AgNPs) were biofabricated using an essential oil of Aquilaria sinensis (AsEO) and Pogostemonis Herba essential oil of Pogostemon cablin (PcEO) in one step and cost-effective manner. UV-vis spectrophotometry, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis and energy-dispersive X-ray spectroscopy were used to confirm the AgNPs formation and their biophysical characterization. The larvicidal and pupicidal toxicity of AsEO, PcEO and biosynthesized AgNPs were evaluated against larvae and pupae of the dengue and Zika virus vector Aedes albopictus. Compared to the tested essential oils, the biofabricated AgNPs showed the highest toxicity against larvae and pupae of Ae.albopictus. In particular, the LC50 values of AsEO ranged from 44.23 (I) to 166 (pupae), LC50 values of PcEO ranged from 32.49 (I) to 90.05(IV), LC50 values of AsEO-AgNPs from 0.81 (I) to 1.12 (IV) and LC50 values of PcEO-AgPNs from 0.85 (I) to 1.19 (IV). Furthermore, histological analysis of the midgut cells of the control and treated larvae exhibited that the epithelial cells and brush border were highly affected by the fabricated AgNPs compared to the essential oils (AsEO and PcEO). Overall, the A. sinensis and P. cablin essential oils fabricated AgNPs have a potential of application as a biopesticide for mosquito control through safer and cost-effective approach.


Asunto(s)
Aedes/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Aceites Volátiles , Pogostemon/química , Plata , Thymelaeaceae/química , Animales , Dengue/transmisión , Tracto Gastrointestinal/efectos de los fármacos , Insecticidas , Larva/efectos de los fármacos , Nanopartículas del Metal/ultraestructura , Control de Mosquitos , Mosquitos Vectores/efectos de los fármacos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Plata/química , Plata/farmacología , Infección por el Virus Zika/transmisión
13.
Artif Cells Nanomed Biotechnol ; 46(3): 558-567, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28541740

RESUMEN

Mosquitoes act as key vector for transmission of devastating parasites and pathogens which affect millions of people globally. In this research, the green synthesis of silver nanoparticles of Cassia fistula fruit pulp as an innovative and operative tool against vector mosquitoes is presented. Silver nanoparticles were characterized by a series of techniques including Fourier transform infrared spectroscopy, Transmission Electron Microscope and confirmed by Scanning Electron Microscope, UV-Vis spectrophotometry and X-ray diffraction. Silver nanoparticles were highly effective against the larvae (I-IV instar) and pupae of Aedes albopictus and Culex pipiens pallens after 24, 48 and 72 h of treatment. Ae. albopictus had LC50 values ranging from 8.3 mg/L (I instar) to 17.3 mg/L (pupae) and LC50 ranging from 1.1 mg/L (I instar) to 19.0 mg/L (pupae) against Cx. pipiens pallens. The systemic effect of AgNPs was further assessed in the fourth instar larvae of Ae. albopictus and Cx. pipiens pallens by measuring the levels of total proteins and activity of two important marker enzymes: Acetylcholinesterase and α- and ß-carboxylesterase. Overall, the findings of the study suggest that the use of Cassia fistula-fruit pulp extract mediated synthesis of silver nanoparticles can be used for controlling vector mosquitoes. This is the first report on the mosquito larvicidal and pupicidal activity of AgNPs synthesized by Cassia fistula fruit pulp and its possible mechanism of action.


Asunto(s)
Aedes/crecimiento & desarrollo , Cassia/química , Culex/crecimiento & desarrollo , Frutas/química , Insecticidas , Nanopartículas del Metal/química , Extractos Vegetales/química , Plata , Animales , Insecticidas/síntesis química , Insecticidas/química , Insecticidas/farmacología , Plata/química , Plata/farmacología
14.
Nat Prod Res ; 32(5): 514-520, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28503948

RESUMEN

Utilisation of Anagrus nilaparvatae is a promising and effective method for planthoppers manipulation. Twenty-seven components of remote lemongrass (Cymbopogon distans) oil were identified by GC/MS and nine volatiles were selected for behavioural experiments. In this study, we noted that the remote lemongrass oil was attractive to female A. nilaparvatae at concentrations of 0.1 and 1 mg/L. α-Pinene, ß-pinene, eucalyptol, carveol and D-carvone attracted female wasps in the dose-dependent bioassays. Blend 1 (a mixture of eucalyptol, D-carvone, carveol, α-pinene, and ß-pinene with ratios of remote lemongrass oil volatiles of 625:80:11:5:3) attracted female wasps at 10 mg/L, while blend 2 (a mixture of the same five volatiles at the same loading ratio) attracted them at 0.1 and 1 mg/L. These results suggested that plant essential oils could be attractants for natural enemies to control pests. The ratios of volatiles in the mixtures affect the attractiveness of the synthetic mixtures.


Asunto(s)
Cymbopogon/química , Himenópteros/fisiología , Aceites Volátiles/farmacología , Avispas/efectos de los fármacos , Avispas/fisiología , Animales , Monoterpenos Bicíclicos , Agentes de Control Biológico/farmacología , Compuestos Bicíclicos con Puentes/análisis , Compuestos Bicíclicos con Puentes/farmacología , Monoterpenos Ciclohexánicos , Ciclohexanoles/análisis , Ciclohexanoles/farmacología , Eucaliptol , Femenino , Cromatografía de Gases y Espectrometría de Masas , Monoterpenos/análisis , Monoterpenos/farmacología , Aceites Volátiles/química , Compuestos Orgánicos Volátiles/análisis
15.
Artif Cells Nanomed Biotechnol ; 45(7): 1369-1378, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27855517

RESUMEN

Culex pipiens pallens are the most common mosquito's vector in Asia. In order to protect the people from diseases, the anti-mosquito population is necessary that uses safe and new bio-pesticides such as bacteria-AgNPs. In our report, we used two kinds of bacteria to synthesize silver nanoparticles to examine the toxic effect on the larvae and pupae of Cx. pipiens pallens and also used as antimicrobial activity. The biosynthesis of AgNPs and its characterization was carried out by UV-Vis spectrophotometry, FTIR, TEM, SEM, and EDX. The larvicidal and pupicidal assays revealed that the lethal concentration LC50 values of Bacillus amyloliquefaciens-AgNPs were 0.72 ppm (I), 0.73 ppm (II), 0.69 ppm (III), 1.16 ppm (IV), and 4.18 (Pupae), while LC50 values of Bacillus subtilis-AgNPs were 0.60 ppm (I), 0.62 ppm (II), 0.21 ppm (III), 0.28 ppm (IV), and 3.46 ppm (Pupae) after 72 h of exposure. Antibacterial activity test of AgNPs reveals better results against rice pathogenic bacteria than bacteria alone. Thus, bacteria-mediated silver nanoparticles have a rapid effect on vector mosquito and microbial pathogen suggesting savings of energy and resources. Hence, bacteria-AgNPs may be used in the future as an effective weapon to control vector mosquito and harmful bacteria.


Asunto(s)
Bacillus amyloliquefaciens/metabolismo , Bacillus subtilis/metabolismo , Culex , Nanopartículas del Metal , Nanotecnología , Plata/metabolismo , Plata/farmacología , Animales , Antibacterianos/biosíntesis , Antibacterianos/química , Antibacterianos/farmacología , Bacillus amyloliquefaciens/fisiología , Bacillus subtilis/fisiología , Insecticidas/química , Insecticidas/metabolismo , Insecticidas/farmacología , Larva , Pupa , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...