Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-11088753

RESUMEN

We present spectroscopic measurements of the helium-like and lithium-like argon emission supported by Thomson scattering diagnostics on gas bag targets. These data provide critical tests of plasma spectroscopic K-shell models. In particular, we have measured the line radiation in the wavelength region of the He-like Ar 1s(2)-1s3l transition (He-beta) that is of interest for density and temperature measurements of plasmas from gas-filled targets (n(e)/=10(24) cm(-3)). The spectra show lithium-like dielectronic satellites on the red wing of the He-beta line that are temperature sensitive and are known to influence the shape of the Stark-broadened line profiles observed from implosions. To examine the kinetics modeling of this complex, i.e., the He-beta and its associated satellites, we have performed experiments in gas bag plasmas at densities of (0.6-1.1)x10(21) cm(-3) where we independently determine the electron temperature with ultraviolet Thomson scattering. The comparison of the satellite intensities with kinetics modeling shows good agreement for satellites whose upper states are populated by dielectronic capture, but shows discrepancies for inner-shell collisional excited transitions.

2.
Artículo en Inglés | MEDLINE | ID: mdl-11031629

RESUMEN

This work presents and interprets, by means of detailed atomic calculations, observations of L-shell (n = 3-->n = 2) transitions in highly ionized molybdenum, the main intrinsic heavy impurity in the Frascati tokamak upgrade plasmas. These hot plasmas were obtained by additional electron cyclotron resonance heating (ECRH), at the frequency of 140 Ghz, during the current ramp-up phase of the discharge. Injecting 400 kW on axis and 800 kW slightly off axis, the peak central electron temperature reached 8.0 and 7.0 keV, respectively, for a time much longer than the ionization equilibrium time of the molybdenum ions. X-ray emissions from rarely observed high charge states, Mo30+ to Mo39+, have been studied with moderate spectral resolution (lambda/delta lambda approximately 150) and a time resolution of 5 ms. A sophisticated collisional-radiative model for the study of molybdenum ions in plasmas with electron temperature in the range 4-20 keV is presented. The sensitivity of the x-ray emission to the temperature and to impurity transport processes is discussed. This model has been then used to investigate two different plasma scenarios. In the first regime the ECRH heating occurs on axis during the current ramp up phase, when the magnetic shear is evolving from negative to zero up to the half radius. The spectrum is well reproduced with the molybdenum ions in coronal equilibrium and with a central impurity peaking. In the second regime, at the beginning of the current flat top when magnetic shear is monotonic and sawtoothing activity is appearing, the lowest charge states (Mo33+ to Mo30+), populated off axis, are affected by anomalous transport and the total molybdenum profile is found to be flat up to the half radius. We conclude with the presentation of "synthetic spectra" computed for even higher temperature plasmas that are expected in future experiments with higher ECRH power input.

3.
Phys Rev Lett ; 85(5): 992-5, 2000 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-10991457

RESUMEN

The charge-state distribution in a well-characterized highly ionized Au plasma was accurately determined using time-resolved x-ray spectroscopy. Simultaneous measurements of the electron temperature and density allow the first direct comparisons with nonlocal thermodynamic equilibrium model predictions for the charge-state distribution of a highly ionized high- Z plasma in a nonradiative environment. The importance of two-electron atomic processes is clearly demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...