Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(18): 186001, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759199

RESUMEN

The kagome materials AV_{3}Sb_{5} (A=K, Rb, Cs) host an intriguing interplay between unconventional superconductivity and charge-density waves. Here, we investigate CsV_{3}Sb_{5} by combining high-resolution thermal-expansion, heat-capacity, and electrical resistance under strain measurements. We directly unveil that the superconducting and charge-ordered states strongly compete, and that this competition is dramatically influenced by tuning the crystallographic c axis. In addition, we report the absence of additional bulk phase transitions within the charge-ordered state, notably associated with rotational symmetry breaking within the kagome planes. This suggests that any breaking of the C_{6} invariance occurs via different stacking of C_{6}-symmetric kagome patterns. Finally, we find that the charge-density-wave phase exhibits an enhanced A_{1g}-symmetric elastoresistance coefficient, whose large increase at low temperature is driven by electronic degrees of freedom.

2.
Nat Commun ; 14(1): 7282, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949889

RESUMEN

Research on charge-density-wave (CDW) ordered transition-metal dichalcogenides continues to unravel new states of quantum matter correlated to the intertwined lattice and electronic degrees of freedom. Here, we report an inelastic x-ray scattering investigation of the lattice dynamics of the canonical CDW compound 2H-TaSe2 complemented by angle-resolved photoemission spectroscopy and density functional perturbation theory. Our results rule out the formation of a central-peak without full phonon softening for the CDW transition in 2H-TaSe2 and provide evidence for a novel precursor region above the CDW transition temperature TCDW, which is characterized by an overdamped phonon mode and not detectable in our photoemission experiments. Thus, 2H-TaSe2 exhibits structural before electronic static order and emphasizes the important lattice contribution to CDW transitions. Our ab-initio calculations explain the interplay of electron-phonon coupling and Fermi surface topology triggering the CDW phase transition and predict that the CDW soft phonon mode promotes emergent superconductivity near the pressure-driven CDW quantum critical point.

3.
Nat Commun ; 13(1): 4535, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927267

RESUMEN

Understanding the organizing principles of interacting electrons and the emergence of novel electronic phases is a central endeavor of condensed matter physics. Electronic nematicity, in which the discrete rotational symmetry in the electron fluid is broken while the translational one remains unaffected, is a prominent example of such a phase. It has proven ubiquitous in correlated electron systems, and is of prime importance to understand Fe-based superconductors. Here, we find that fluctuations of such broken symmetry are exceptionally strong over an extended temperature range above phase transitions in [Formula: see text], the nickel homologue to the Fe-based systems. This lends support to a type of electronic nematicity, dynamical in nature, which exhibits a particularly strong coupling to the underlying crystal lattice. Fluctuations between degenerate nematic configurations cause splitting of phonon lines, without lifting degeneracies nor breaking symmetries, akin to spin liquids in magnetic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...