Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.030
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38967895

RESUMEN

To evaluate a convolutional neural network's performance (nnU-Net) in the assessment of vascular contours, calcification and PET tracer activity using Ga-68 DOTATATE PET/CT. Patients who underwent Ga-68 DOTATATE PET/CT imaging over a 12-month period for neuroendocrine investigation were included. Manual cardiac and aortic segmentations were performed by an experienced observer. Scans were randomly allocated in ratio 64:16:20 for training, validation and testing of the nnU-Net model. PET tracer uptake and calcium scoring were compared between segmentation methods and different observers. 116 patients (53.5% female) with a median age of 64.5 years (range 23-79) were included. There were strong, positive correlations between all segmentations (mostly r > 0.98). There were no significant differences between manual and AI segmentation of SUVmean for global cardiac (mean ± SD 0.71 ± 0.22 vs. 0.71 ± 0.22; mean diff 0.001 ± 0.008, p > 0.05), ascending aorta (mean ± SD 0.44 ± 0.14 vs. 0.44 ± 0.14; mean diff 0.002 ± 0.01, p > 0.05), aortic arch (mean ± SD 0.44 ± 0.10 vs. 0.43 ± 0.10; mean diff 0.008 ± 0.16, p > 0.05) and descending aorta (mean ± SD < 0.001; 0.58 ± 0.12 vs. 0.57 ± 0.12; mean diff 0.01 ± 0.03, p > 0.05) contours. There was excellent agreement between the majority of manual and AI segmentation measures (r ≥ 0.80) and in all vascular contour calcium scores. Compared with the manual segmentation approach, the CNN required a significantly lower workflow time. AI segmentation of vascular contours using nnU-Net resulted in very similar measures of PET tracer uptake and vascular calcification when compared to an experienced observer and significantly reduced workflow time.

2.
Angew Chem Int Ed Engl ; : e202411730, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044319

RESUMEN

We report a highly crystalline self-assembled multilayer (SAMUL) that is fundamentally different from the conventional monolayer or disordered bilayer used for hole-extraction in inverted perovskite solar cells (PSCs). The SAMUL can be easily formed on ITO substrate to form better surface coverage for enhancing the performance and stability of PSCs. A detailed structure-property-performance relationship of molecules used for SAMUL is established through a systematic study of their crystallinity, molecular packing, and hole-transporting properties. These SAMULs are rationally optimized by varying their molecular structures and deposition through thermal evaporation or spin-coating for fabricating PSCs. The CbzNaphPPA-based SAMUL was chosen for fabricating inverted PSCs due to its highest crystallinity and hole mobility derived from the ordered H-aggregation, which resulted in a remarkably high fill factor of 86.45%. This enables a very impressive power conversion efficiency (PCE) of 26.07% to be achieved along with excellent device stability (94% of its initial PCE retained after continuous operation for 1200 h under 1-sun irradiation at maximum power point at 65°C). Additionally, a record-high PCE of 23.50% could be achieved by adopting a thermally evaporated SAMUL. This greatly simplifies and broadens the scope for SAM to be used for large-area devices on diverse substrates.

3.
Inorg Chem ; 63(29): 13380-13391, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38986132

RESUMEN

The assessment of trivalent lanthanide yields from the fission of uranium-235 is currently achieved using LN (LaNthanide) resin, di(2-ethylhexyl)orthophosphoric acid immobilized on a solid support. However, coelution of lighter lanthanides into terbium (Tb3+) fractions remains a significant problem in recovery of analytically pure fractions. In order to understand how the separation of trivalent lanthanides and yttrium (Ln3+) with LN resin proceeds and how to improve it, their speciation with the organic extractant HDEHP must be fully understood under aqueous conditions. A comprehensive luminescence analysis of aqueous solutions of Ln3+ in contact with HDEHP, along with infrared spectroscopy, elemental combustion analysis, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and mass spectrometry, was used to indicate that an intermediate species is responsible for the coelution; where similar Ln3+ centers (e.g., Eu3+ and Tb3+) are bridged by the O-P-O moiety of deprotonated HDEHP to form large heteronuclear oligomeric structures with the general formula [Ln2(DEHP)6]n. Energy transfer from Tb3+ to Eu3+ in this structure confirms that lanthanide centers are within 10 Å and was used to propose that the oligomeric [Ln2(DEHP)6]n structure is formed rather than a dimeric Ln2(DEHP)6 structure. The effect of this speciation on LN resin column elution is investigated using luminescence spectroscopy, confirming that the oligomeric [Ln2(DEHP)6]n species could disrupt regular elution behavior and cause the problematic bleeding of lighter lanthanides (Sm3+ and Eu3+) into Tb3+ fractions. Resin luminescence measurements were used to propose that the bleeding of the organic extractant HDEHP from its solid support causes the formation of the disruptive oligometallic species.

4.
Acta Med Philipp ; 58(10): 35-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939423

RESUMEN

Background: Based on the 2017-2020 annual report of the Department of Health-Antimicrobial Resistance Surveillance Program, significant resistance patterns have been observed for common disease-causing pathogens. In the hospital setting, antimicrobial stewardship programs have been implemented to optimize the use of antimicrobials. Drug utilization review studies provide essential feedback to improve prescribing and use of medications. Objectives: This study aimed to review drug utilization of monitored parenteral antimicrobials among patients admitted from January to December 2019. Methods: The study employed a retrospective, cross-sectional, descriptive research design. A retrospective chart review of drugs administered to patients was conducted. Results: A total of 821 patients charts met the inclusion criteria. The patients' ages ranged from 18 to 98 years old and 52% were females. General Internal Medicine practitioners (28%) were the top prescribers of monitored parenteral antimicrobials primarily for the management of moderate-risk community-acquired pneumonia (39%). They were mostly indicated for empirical treatment of infections (94%) and were given for an average of 5.73 days.Only 58% of the total cases had orders for culture and sensitivity testing. Of which, principally 47% had colony cultures. Blood (29%) and sputum (27%) were the most common specimens taken for culture and sensitivity testing. The microorganisms often isolated were Escherichia coli (19%), Klebsiella pneumoniae (18%), and Staphylococcus aureus (9%). In addition, extended-spectrum beta lactamase-producing gram-negative pathogens (4%) and methicillin-resistant S. aureus (1%) were also isolated. All the microorganisms isolated showed most resistance to ampicillin (81%) and most susceptibility to colistin (100%). There were drug therapy-related problems encountered. There was one case of an adverse drug reaction (0.1%) and two cases of contraindications (0.2%). Therapeutic duplication was also observed in 5% of the cases. Moreover, 39% had instances of drug-drug interactions.Piperacillin-tazobactam had the highest consumption (79.50 defined daily doses/1,000-patient days) among the monitored parenteral antimicrobials.Some prescriptions were deemed inappropriate upon evaluation. 12% of cases were inappropriate based on the justification indicator. As for the critical indicators, duration of therapy (78%) was the main reason. Only four components of the DUE criteria indicators have met or exceeded the established threshold level.The cost analysis indicated that the total actual cost of therapy with the monitored parenteral antimicrobials amounted to ₱17,645,601.73. Considering Department of Health National Antibiotic Guidelines recommendations, ideal total cost of treatment was ₱14,917,214.29. Potential cumulative cost savings of ₱2,728,387.44 could have been achieved for patients admitted last 2019. Conclusion: Consumption of piperacillin-tazobactam was relatively high as compared to the other monitored parenteral antimicrobials covered in this study. Physicians at the study site seldom prescribe monitored parenteral antimicrobials as recommended by the National Antibiotic Guidelines. This is evidenced in the incidence of inappropriate therapy regimens, with inapt duration of therapy as the leading explanation.From the patient's perspective, the main economic implication was on the direct medical costs, particularly the increased cost of the actual antimicrobial therapy prescribed to manage various infections. Adherence of physicians to the established guidelines and selection of the most cost-effective therapy could have resulted in considerable cost savings.

6.
Small Methods ; : e2400172, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807542

RESUMEN

Delicately manipulating nanomorphology is recognized as a vital and effective approach to enhancing the performance and stability of organic solar cells (OSCs). However, the complete removal of solvent additives with high boiling points is typically necessary to maintain the operational stability of the device. In this study, two commercially available organic intermediates, namely thieno[3,2-b]thiophene (TT) and 3,6-dibromothieno[3,2-b]thiophene (TTB) are introduced, as solid additives in OSCs. The theoretical simulations and experimental results indicate that TT and TTB may exhibit stronger intermolecular interactions with the acceptor Y6 and donor PM6, respectively. This suggests that the solid additives (SAs) can selectively intercalate between Y6 and PM6 molecules, thereby improving the packing order and crystallinity. As a result, the TT-treated PM6:Y6 system exhibits a favorable morphology, improved charge carrier mobility, and minimal charge recombination loss. These characteristics contribute to an impressive efficiency of 17.75%. Furthermore, the system demonstrates exceptional thermal stability (T80 > 2800 h at 65 °C) and outstanding photostability. The universal applicability of TT treatment is confirmed in OSCs employing D18:L8-BO, achieving a significantly higher PCE of 18.3%. These findings underscore the importance of using appropriate solid additives to optimize the blend morphology of OSCs, thereby improving photovoltaic performance and thermal stability.

7.
JAMA Netw Open ; 7(5): e2411140, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38758557

RESUMEN

Importance: Providing assisted ventilation during delayed umbilical cord clamping may improve outcomes for extremely preterm infants. Objective: To determine whether assisted ventilation in extremely preterm infants (23 0/7 to 28 6/7 weeks' gestational age [GA]) followed by cord clamping reduces intraventricular hemorrhage (IVH) or early death. Design, Setting, and Participants: This phase 3, 1:1, parallel-stratified randomized clinical trial conducted at 12 perinatal centers across the US and Canada from September 2, 2016, through February 21, 2023, assessed IVH and early death outcomes of extremely preterm infants randomized to receive 120 seconds of assisted ventilation followed by cord clamping vs delayed cord clamping for 30 to 60 seconds with ventilatory assistance afterward. Two analysis cohorts, not breathing well and breathing well, were specified a priori based on assessment of breathing 30 seconds after birth. Intervention: After birth, all infants received stimulation and suctioning if needed. From 30 to 120 seconds, infants randomized to the intervention received continuous positive airway pressure if breathing well or positive-pressure ventilation if not, with cord clamping at 120 seconds. Control infants received 30 to 60 seconds of delayed cord clamping followed by standard resuscitation. Main Outcomes and Measures: The primary outcome was any grade IVH on head ultrasonography or death before day 7. Interpretation by site radiologists was confirmed by independent radiologists, all masked to study group. To estimate the association between study group and outcome, data were analyzed using the stratified Cochran-Mantel-Haenszel test for relative risk (RR), with associations summarized by point estimates and 95% CIs. Results: Of 1110 women who consented to participate, 548 were randomized and delivered infants at GA less than 29 weeks. A total of 570 eligible infants were enrolled (median [IQR] GA, 26.6 [24.9-27.7] weeks; 297 male [52.1%]). Intraventricular hemorrhage or death occurred in 34.9% (97 of 278) of infants in the intervention group and 32.5% (95 of 292) in the control group (adjusted RR, 1.02; 95% CI, 0.81-1.27). In the prespecified not-breathing-well cohort (47.5% [271 of 570]; median [IQR] GA, 26.0 [24.7-27.4] weeks; 152 male [56.1%]), IVH or death occurred in 38.7% (58 of 150) of infants in the intervention group and 43.0% (52 of 121) in the control group (RR, 0.91; 95% CI, 0.68-1.21). There was no evidence of differences in death, severe brain injury, or major morbidities between the intervention and control groups in either breathing cohort. Conclusions and Relevance: This study did not show that providing assisted ventilation before cord clamping in extremely preterm infants reduces IVH or early death. Additional study around the feasibility, safety, and efficacy of assisted ventilation before cord clamping may provide additional insight. Trial Registration: ClinicalTrials.gov Identifier: NCT02742454.


Asunto(s)
Recien Nacido Extremadamente Prematuro , Clampeo del Cordón Umbilical , Humanos , Recién Nacido , Femenino , Masculino , Clampeo del Cordón Umbilical/métodos , Canadá , Respiración Artificial/métodos , Hemorragia Cerebral Intraventricular/prevención & control , Cordón Umbilical , Presión de las Vías Aéreas Positiva Contínua/métodos , Edad Gestacional , Factores de Tiempo , Estados Unidos
8.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712189

RESUMEN

Keyboard typing with finger movements is a versatile digital interface for users with diverse skills, needs, and preferences. Currently, such an interface does not exist for people with paralysis. We developed an intracortical brain-computer interface (BCI) for typing with attempted flexion/extension movements of three finger groups on the right hand, or both hands, and demonstrated its flexibility in two dominant typing paradigms. The first paradigm is "point-and-click" typing, where a BCI user selects one key at a time using continuous real-time control, allowing selection of arbitrary sequences of symbols. During cued character selection with this paradigm, a human research participant with paralysis achieved 30-40 selections per minute with nearly 90% accuracy. The second paradigm is "keystroke" typing, where the BCI user selects each character by a discrete movement without real-time feedback, often giving a faster speed for natural language sentences. With 90 cued characters per minute, decoding attempted finger movements and correcting errors using a language model resulted in more than 90% accuracy. Notably, both paradigms matched the state-of-the-art for BCI performance and enabled further flexibility by the simultaneous selection of multiple characters as well as efficient decoder estimation across paradigms. Overall, the high-performance interface is a step towards the wider accessibility of BCI technology by addressing unmet user needs for flexibility.

9.
Adv Mater ; 36(23): e2313393, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38573779

RESUMEN

The meta-stable active layer morphology of organic solar cells (OSCs) is identified as the main cause of the rapid burn-in loss of power conversion efficiency (PCE) during long-term device operation. However, effective strategies to eliminate the associated loss mechanisms from the initial stage of device operation are still lacking, especially for high-efficiency material systems. Herein, the introduction of molecularly engineered dimer acceptors with adjustable thermal transition properties into the active layer of OSCs to serve as supramolecular stabilizers for regulating the thermal transitions and optimizing the crystallization of the absorber composites is reported. By establishing intimate π-π interactions with small-molecule acceptors, these stabilizers can effectively reduce the trap-state density (Nt) in the devices to achieve excellent PCEs over 19%. More importantly, the low Nt associated with an initially optimized morphology can be maintained under external stresses to significantly reduce the PCE burn-in loss in devices. This research reveals a judicious approach to improving OPV stability by establishing a comprehensive correlation between material properties, active-layer morphology, and device performance, for developing burn-in-free OSCs.

10.
medRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645254

RESUMEN

Brain-computer interfaces can enable rapid, intuitive communication for people with paralysis by transforming the cortical activity associated with attempted speech into text on a computer screen. Despite recent advances, communication with brain-computer interfaces has been restricted by extensive training data requirements and inaccurate word output. A man in his 40's with ALS with tetraparesis and severe dysarthria (ALSFRS-R = 23) was enrolled into the BrainGate2 clinical trial. He underwent surgical implantation of four microelectrode arrays into his left precentral gyrus, which recorded neural activity from 256 intracortical electrodes. We report a speech neuroprosthesis that decoded his neural activity as he attempted to speak in both prompted and unstructured conversational settings. Decoded words were displayed on a screen, then vocalized using text-to-speech software designed to sound like his pre-ALS voice. On the first day of system use, following 30 minutes of attempted speech training data, the neuroprosthesis achieved 99.6% accuracy with a 50-word vocabulary. On the second day, the size of the possible output vocabulary increased to 125,000 words, and, after 1.4 additional hours of training data, the neuroprosthesis achieved 90.2% accuracy. With further training data, the neuroprosthesis sustained 97.5% accuracy beyond eight months after surgical implantation. The participant has used the neuroprosthesis to communicate in self-paced conversations for over 248 hours. In an individual with ALS and severe dysarthria, an intracortical speech neuroprosthesis reached a level of performance suitable to restore naturalistic communication after a brief training period.

11.
Nucl Med Commun ; 45(6): 465-473, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38465420

RESUMEN

Targeted alpha therapy (TAT) is a promising form of oncology treatment utilising alpha-emitting radionuclides that can specifically accumulate at disease sites. The high energy and high linear energy transfer associated with alpha emissions causes localised damage at target sites whilst minimising that to surrounding healthy tissue. The lack of appropriate radionuclides has inhibited research in TAT. The identification of appropriate radionuclides should be primarily a function of the radionuclide's nuclear decay properties, and not their biochemistry or economic factors since these last two factors can change; however, the nuclear decay properties are fixed to that nuclide. This study has defined and applied a criterion based on nuclear decay properties useful for TAT. This down-selection exercise concluded that the most appropriate radionuclides are: 149 Tb, 211 At/ 211 Po, 212 Pb/ 212 Bi/ 212 Po, 213 Bi/ 213 Po, 224 Ra, 225 Ra/ 225 Ac/ 221 Fr, 226 Ac/ 226 Th, 227 Th/ 223 Ra/ 219 Rn, 229 U, 230 U/ 226 Th, and 253 Fm, the majority of which have previously been considered for TAT. 229 U and 253 Fm have been newly identified and could become new radionuclides of interest for TAT, depending on their decay chain progeny.


Asunto(s)
Partículas alfa , Radioisótopos , Partículas alfa/uso terapéutico , Radioisótopos/uso terapéutico , Humanos , Radioquímica
12.
ChemSusChem ; 17(13): e202301559, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38372481

RESUMEN

Organic solar cells (OSCs) have achieved remarkable power conversion efficiencies (PCEs) of over 19 % in the past few years due to the rapid development of non-fullerene acceptors (NFAs). However, the operational stability remains a great challenge that inhibits their commercialization. Recently, oligomeric NFAs (ONFAs) have attracted great attention, which not only can deliver excellent device performance, but also improve the thermal-/photo- stability of OSCs. This is attributed to the suppressed molecular diffusion of ONFAs associated with their high glass-transition temperature (Tg) and improved thermodynamic properties of ONFAs. Herein, we focus on investigating the correction between the ONFA chemical structure, material properties, device performance, and stability. In addition, we also try to point out the challenges in synthesizing ONFAs and provide potential directions for future ONFA designs.

13.
Chem Rev ; 124(5): 2138-2204, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421811

RESUMEN

Interfacial engineering has long been a vital means of improving thin-film device performance, especially for organic electronics, perovskites, and hybrid devices. It greatly facilitates the fabrication and performance of solution-processed thin-film devices, including organic field effect transistors (OFETs), organic solar cells (OSCs), perovskite solar cells (PVSCs), and organic light-emitting diodes (OLEDs). However, due to the limitation of traditional interfacial materials, further progress of these thin-film devices is hampered particularly in terms of stability, flexibility, and sensitivity. The deadlock has gradually been broken through the development of self-assembled monolayers (SAMs), which possess distinct benefits in transparency, diversity, stability, sensitivity, selectivity, and surface passivation ability. In this review, we first showed the evolution of SAMs, elucidating their working mechanisms and structure-property relationships by assessing a wide range of SAM materials reported to date. A comprehensive comparison of various SAM growth, fabrication, and characterization methods was presented to help readers interested in applying SAM to their works. Moreover, the recent progress of the SAM design and applications in mainstream thin-film electronic devices, including OFETs, OSCs, PVSCs and OLEDs, was summarized. Finally, an outlook and prospects section summarizes the major challenges for the further development of SAMs used in thin-film devices.

14.
Eur J Neurosci ; 59(9): 2403-2415, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38385841

RESUMEN

Schizophrenia is a psychotic disorder with an increasing prevalence and incidence over the last two decades. The condition presents with a diverse array of positive, negative, and cognitive impairments. Conventional treatments often yield unsatisfactory outcomes, especially with negative symptoms. We investigated the role of prefrontocortical (PFC) N-methyl-D-aspartate receptors (NMDARs) in the pathophysiology and development of schizophrenia. We explored the potential therapeutic effects of cannabidiolic acid (CBDA) methyl ester (HU-580), an analogue of CBDA known to act as an agonist of the serotonin-1A receptor (5-HT1AR) and an antagonist of cannabinoid type 1 receptor (CB1R). C57BL/6 mice were intraperitoneally administered the NMDAR antagonist, dizocilpine (MK-801, .3 mg/kg) once daily for 17 days. After 7 days, they were concurrently given HU-580 (.01 or .05 µg/kg) for 10 days. Behavioural deficits were assessed at two time points. We conducted enzyme-linked immunosorbent assays to measure the concentration of PFC 5-HT1AR and CB1R. We found that MK-801 effectively induced schizophrenia-related behaviours including hyperactivity, social withdrawal, increased forced swim immobility, and cognitive deficits. We discovered that low-dose HU-580 (.01 µg/kg), but not the high dose (.05 µg/kg), attenuated hyperactivity, forced swim immobility and cognitive deficits, particularly in female mice. Our results revealed that MK-801 downregulated both CB1R and 5-HT1AR, an effect that was blocked by both low- and high-dose HU-580. This study sheds light on the potential antipsychotic properties of HU-580, particularly in the context of NMDAR-induced dysfunction. Our findings could contribute significantly to our understanding of schizophrenia pathophysiology and offer a promising avenue for exploring the therapeutic potential of HU-580 and related compounds in alleviating symptoms.


Asunto(s)
Modelos Animales de Enfermedad , Maleato de Dizocilpina , Ratones Endogámicos C57BL , Receptor Cannabinoide CB1 , Receptor de Serotonina 5-HT1A , Esquizofrenia , Animales , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/inducido químicamente , Esquizofrenia/metabolismo , Maleato de Dizocilpina/farmacología , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Masculino , Ratones , Femenino , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/agonistas , Cannabinoides/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Antipsicóticos/farmacología
15.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370697

RESUMEN

People with paralysis express unmet needs for peer support, leisure activities, and sporting activities. Many within the general population rely on social media and massively multiplayer video games to address these needs. We developed a high-performance finger brain-computer-interface system allowing continuous control of 3 independent finger groups with 2D thumb movements. The system was tested in a human research participant over sequential trials requiring fingers to reach and hold on targets, with an average acquisition rate of 76 targets/minute and completion time of 1.58 ± 0.06 seconds. Performance compared favorably to previous animal studies, despite a 2-fold increase in the decoded degrees-of-freedom (DOF). Finger positions were then used for 4-DOF velocity control of a virtual quadcopter, demonstrating functionality over both fixed and random obstacle courses. This approach shows promise for controlling multiple-DOF end-effectors, such as robotic fingers or digital interfaces for work, entertainment, and socialization.

16.
Chem Sci ; 15(8): 2778-2785, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38404377

RESUMEN

Self-assembled monolayers (SAMs) have been widely employed as the bottom-contact hole-selective layer (HSL) in inverted perovskite solar cells (PSCs). Besides manipulating the electrical properties, molecularly engineering the SAM provides an opportunity to modulate the perovskite buried interface. Here, we successfully introduced Lewis-basic oxygen and sulfur heteroatoms through rational molecular design of asymmetric SAMs to obtain two novel multifunctional SAMs, CbzBF and CbzBT. Detailed characterization of single-crystal structures and device interfaces shows that enhanced packing, more effective ITO work function adjustment, and buried interface passivation were successfully achieved. Consequently, the champion PSC employing CbzBT showed an excellent power conversion efficiency (PCE) of 24.0% with a high fill factor of 84.41% and improved stability. This work demonstrates the feasibility of introducing defect-passivating heterocyclic groups into SAM molecules to help passivate the interfacial defects in PSCs. The insights gained from this molecular design strategy will accelerate the development of new multifunctional SAM HSLs for efficient PSCs.

17.
Langmuir ; 40(9): 4772-4778, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38381871

RESUMEN

Self-assembled monolayers (SAMs) emerging as promising hole-selective layers (HSLs) are advantageous for facile processability, low cost, and minimal material consumption in the fabrication of both perovskite solar cells (PSCs) and organic solar cells (OSCs). However, owing to the different nature between perovskites and organic semiconductors, few SAMs were reported to effectively accommodate both PSCs and OSCs at the same time. In this regard, a universally applicable SAM that can accommodate both perovskites and organic semiconductors could be desirable for simplifying cell manufacturing, especially from an industrial perspective. In this work, we designed a SAM, TDPA-Cl by introducing chlorinated phenothiazine as the headgroup and linking with anchor phosphonic acid through a butyl chain. The resulting dense SAM was carefully characterized in terms of molecular bonding, surface morphology, and packing density, and its functions in OSCs and PSCs were discussed from the aspects of interactions with the absorber layer, energy level alignment, and charge-selective dipoles. The PM6:Y6-based OSCs with TDPA-Cl SAM as the HSL showed a superior performance to those with PEDOT:PSS. Furthermore, the universality was proved with an efficiency of 17.4% in the D18:Y6 system. In PSCs, the TDPA-Cl-based devices delivered a better performance of 22.4% than the PTAA-based devices (20.8%) with improved processability and reproducibility. This work represents a SAM with reasonably good compromise between the differing requirements of OSCs and PSCs.

18.
J Surg Oncol ; 129(5): 995-999, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221660

RESUMEN

BACKGROUND AND OBJECTIVES: With continued advances in treatment options, patients with endoprosthetic reconstruction are living longer and consequently relying upon their devices for a longer duration. Major causes of endoprosthesis failure include aseptic loosening and mechanical failure. In the setting of tumor resection, loss of bone stock and use of radiation therapy increase the risk for these complications. As such, considerations of remaining native bone and stem length and diameter may be increasingly important. We asked the following questions: (1) What was the overall rate of endoprosthesis failure at a minimum of 5-year follow-up? (2) Does resection length increase implant failure rates? (3) Does implant size and its ratio to cortical width of bone alter implant failure rates? METHODS: We retrospectively analyzed patient outcomes at a single institution between the years of 1999-2022 who underwent cemented endoprosthetic reconstruction at the hip or knee and identified 150 patients. Of these 150, 55 had a follow-up of greater than 5 years and were used for analysis. Radiographs of these patients at time of surgery were assessed and measured for resection length, bone diameter, stem diameter, and remaining bone length. Resection percentage, and stem to bone diameter ratios were then calculated and their relationship to endoprosthesis failure were analyzed. RESULTS: Patients in this cohort had a mean age of 55.8, and mean follow-up of 59.96 months. There were 78 distal femoral replacements (52%), 16 proximal femoral replacements (10.7%), and 56 proximal tibial replacements (37.3%). There were five patients who experienced aseptic loosening and six patients who experienced mechanical failure. Patients with implant failure had a smaller mean stem to bone diameter (36% vs. 44%; p = 0.002). A stem to bone diameter of 40% appeared to be a breaking point between success and failure in this series, with 90% of patients with implant failure having a stem: bone ratio less than 40%. Stem to bone ratio less than 40% increased risk for failure versus stems that were at least 40% the diameter of bone (6/19 [31.6%] vs. 0/36 [0%]; odds ratio 0.68; p < 0.001). Resection length did not appear to have an impact on the rates of aseptic loosening and mechanical failure in this series. CONCLUSIONS: Data from this series suggests a benefit to using stems with a larger diameter when implanting cemented endoprostheses at the hip or knee. Stems which were less than 40% the diameter of bone were substantially more likely to undergo implant failure.


Asunto(s)
Fémur , Falla de Prótesis , Humanos , Persona de Mediana Edad , Diseño de Prótesis , Estudios Retrospectivos , Fémur/diagnóstico por imagen , Fémur/cirugía , Tibia/diagnóstico por imagen , Tibia/cirugía , Reoperación , Resultado del Tratamiento
19.
Sci Rep ; 14(1): 1598, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238386

RESUMEN

Brain-computer interfaces have so far focused largely on enabling the control of a single effector, for example a single computer cursor or robotic arm. Restoring multi-effector motion could unlock greater functionality for people with paralysis (e.g., bimanual movement). However, it may prove challenging to decode the simultaneous motion of multiple effectors, as we recently found that a compositional neural code links movements across all limbs and that neural tuning changes nonlinearly during dual-effector motion. Here, we demonstrate the feasibility of high-quality bimanual control of two cursors via neural network (NN) decoders. Through simulations, we show that NNs leverage a neural 'laterality' dimension to distinguish between left and right-hand movements as neural tuning to both hands become increasingly correlated. In training recurrent neural networks (RNNs) for two-cursor control, we developed a method that alters the temporal structure of the training data by dilating/compressing it in time and re-ordering it, which we show helps RNNs successfully generalize to the online setting. With this method, we demonstrate that a person with paralysis can control two computer cursors simultaneously. Our results suggest that neural network decoders may be advantageous for multi-effector decoding, provided they are designed to transfer to the online setting.


Asunto(s)
Interfaces Cerebro-Computador , Redes Neurales de la Computación , Humanos , Movimiento , Lateralidad Funcional , Mano , Parálisis , Encéfalo
20.
Cardiology ; 149(1): 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37952523

RESUMEN

INTRODUCTION: Elderly patients with acute coronary syndrome (ACS) have a higher risk of adverse cardiovascular events and may be frail but are underrepresented in clinical trials. Previous studies have proposed that frailty assessment is a better tool than chronological age, in assessing older patients' biological age, and may exceed conventional risk scores in predicting the prognosis. Therefore, we wanted to investigate the prevalence and impact on 12-month outcomes of frailty in patients ≥70 years with ACS referred for coronary angiography (CAG). METHODS: Patients ≥70 years with ACS referred for CAG underwent frailty scoring with the clinical frailty scale (CFS). Patients were divided into three groups depending on their CFS: robust (1-3), vulnerable (4), and frail (5-9) and followed for 12 months. RESULTS: Of 455 patients, 69 (15%) patients were frail, 79 (17%) were vulnerable, and 307 (68%) were robust. Frail patients were older (frail: 80.9 ± 5.7 years, vulnerable: 78.5 ± 5.5 years, and robust: 76.6 ± 4.9 years, p < 0.001) and less often treated with percutaneous coronary intervention (frail: 56.5%, vulnerable: 53.2%, and robust: 68.6%, p = 0.014). 12-month mortality was higher among frail patients (frail: 24.6%, vulnerable: 21.8%, and robust: 6.2%, p < 0.001). Frailty was associated with a higher mortality after adjustment for age, sex, comorbidities, the Global Registry of Acute Coronary Events (GRACE) score, and revascularisation (HR 2.67, 95% CI 1.30-5.50, p = 0.008). There was no difference between GRACE and CFS in predicting 12-month mortality (p = 0.893). CONCLUSIONS: Fifteen percent of patients ≥70 years old with ACS referred for CAG are frail. Frail patients have significantly higher 12-month mortality. GRACE and CFS are similar in predicting 12-month mortality.


Asunto(s)
Síndrome Coronario Agudo , Fragilidad , Humanos , Anciano , Fragilidad/epidemiología , Fragilidad/complicaciones , Síndrome Coronario Agudo/diagnóstico por imagen , Síndrome Coronario Agudo/epidemiología , Síndrome Coronario Agudo/complicaciones , Anciano Frágil , Angiografía Coronaria , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...