Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Immunol ; 212(11): 1647-1657, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578274

RESUMEN

Long-term therapeutic outcomes of multiple sclerosis (MS) remain hindered by the chronic nature of immune cell stimulation toward self-antigens. Development of novel methods to target and deplete autoreactive T lymphocytes remains an attractive target for therapeutics for MS. We developed a programmed cell death 1 (PD-1)-targeted radiolabeled mAb and assessed its ability to deplete activated PD-1+ T lymphocytes in vitro and its ability to reduce disease burden of the myelin oligodendrocyte glycoprotein 35-55 experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice. We also investigated the upregulation of PD-1 on infiltrating lymphocytes in an animal model of MS. Finally, we demonstrate the (to our knowledge) first reported positron-emission tomography/computed tomography imaging of activated PD-1+ cells in the EAE animal model of MS. We found that the 177Lu radioisotope-labeled anti-PD-1 mAb demonstrated significant in vitro cytotoxicity toward activated CD4+PD-1+ T lymphocytes and led to significant reduction in overall disease progression in the EAE animal model. Our results show high expression of PD-1 on infiltrating lymphocytes in the spinal cords of EAE diseased animals. Positron-emission tomography/computed tomography imaging of the anti-PD-1 mAb demonstrated significant uptake in the cervical draining lymph nodes highlighting accumulation of activated lymphocytes. Targeted depletion of T lymphocytes using T cell activation markers such as PD-1 may present a novel method to reduce autoimmune attack and inflammation in autoimmune diseases such as MS. Development of multimodal nuclear theranostic agents may present the opportunity to monitor T cell activation via imaging radioisotopes and simultaneously treat MS using therapeutic radioisotopes.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Activación de Linfocitos , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1 , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Ratones , Activación de Linfocitos/inmunología , Anticuerpos Monoclonales , Linfocitos T/inmunología , Femenino , Modelos Animales de Enfermedad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Humanos
2.
Access Microbiol ; 5(12)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188245

RESUMEN

Invasive fungal infections (IFIs) such as mucormycosis are causing devastating morbidity and mortality in immunocompromised patients as anti-fungal agents do not work in the setting of a suppressed immune system. The coronavirus disease 2019 (COVID-19) pandemic has created a novel landscape for IFIs in post-pandemic patients, resulting from severe immune suppression caused by COVID-19 infection, comorbidities (diabetes, obesity) and immunosuppressive treatments such as steroids. The antigen-antibody interaction has been employed in radioimmunotherapy (RIT) to deliver lethal doses of ionizing radiation emitted by radionuclides to targeted cells and has demonstrated efficacy in several cancers. One of the advantages of RIT is its independence of the immune status of a host, which is crucial for immunosuppressed post-COVID-19 patients. In the present work we targeted the fungal pan-antigens 1,3-beta-glucan and melanin pigment, which are present in the majority of pathogenic fungi, with RIT, thus making such targeting pathogen-agnostic. We demonstrated in experimental murine mucormycosis in immunocompetent and immunocompromised mice that lutetium-177 (177Lu)-labelled antibodies to these two antigens effectively decreased the fungal burden in major organs, including the brain. These results are encouraging because they show the effectiveness of pathogen-agnostic RIT in significantly decreasing fungal burden in vivo, while they can also potentially be applied to treat the broad range of invasive fungal infections that express the pan-antigens 1,3-beta-glucan or melanin.

3.
J Radiol Prot ; 42(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35037901

RESUMEN

The field of radiation countermeasures is growing, however, currently there are no effective and non-toxic compounds which could be administered orally to the individuals post exposure to high doses of ionising radiation. The pigment melanin is ubiquitous through all kingdoms of life and provides selective advantage under radiation stress through its role as a chemical and physical shield, and its capacity to respond and react to exposures. Soluble allomelanin was administered to mice following whole-body exposure to lethal or sublethal doses of gamma radiation to determine its capacity to mitigate the effects of acute radiation syndrome, and its utility as a radiation countermeasure. Allomelanin has shown a trend to improve survival post an 8 Gy sublethal radiation exposure when administered up to 48 h post-irradiation. Furthermore, it improved median and overall survival to a 10 Gy lethal radiation exposure, specifically when administered at 24 h post-irradiation. Histological analysis on the jejunum region of the small intestine of this treatment group indicated that alterations of the mucosal and submucosal architecture, and disruption of the lymphatic system associated with lethal radiation exposure were mitigated when allomelanin was administered at 24 h post-irradiation. Based on this work soluble allomelanin derived from a fungal source could serve as an easily sourced, cost-effective, and viable countermeasure to accidental radiation exposure and merits further investigation.


Asunto(s)
Síndrome de Radiación Aguda , Melaninas , Animales , Rayos gamma , Ratones , Dosis de Radiación , Irradiación Corporal Total/efectos adversos
4.
Comput Struct Biotechnol J ; 19: 196-205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33425251

RESUMEN

Melanized fungi have been isolated from some of the harshest radioactive environments, and their ability to thrive in these locations is in part due to the pigment melanin. Melanin imparts a selective advantage to fungi by providing a physical shield, a chemical shield, and possibly a signaling mechanism. In previous work we demonstrated that protracted exposure of the melanized yeast Exophiala dermatitidis to mixed alpha-, beta-, and gamma-emitting radiation resulted in an adapted strain able to mount a unique response to ionizing radiation in the environment in a melanin-dependent fashion. By exploring the genome and transcriptome of this adapted melanized strain relative to a non-irradiated control we determined the altered response was transcriptomic in nature, as whole genome sequencing revealed limited variation. Transcriptomic analysis indicated that of the adapted isolates analyzed, two lineages existed: one like the naïve, non-adapted strain, and one with a unique transcriptomic signature that exhibited downregulation of metabolic processes, and upregulation of translation-associated genes. Analysis of differential gene expression in the adapted strain showed an overlap in response between the control conditions and reactive oxygen species conditions, whereas exposure to an alpha particle source resulted in a robust downregulation of metabolic processes and upregulation of DNA replication and repair genes, and RNA metabolic processes. This suggest previous exposure to radiation primes the fungus to respond to subsequent exposures in a unique way. By exploring this unique response, we have expanded our knowledge of how melanized fungi interact with and respond to ionizing radiation in their environment.

5.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218169

RESUMEN

Melanoma incidence continues to rise, and while therapeutic approaches for early stage cases are effective, metastatic melanoma continues to be associated with high mortality. Immune checkpoint blockade (ICB) has demonstrated clinical success with approved drugs in cohorts of patients with metastatic melanoma and targeted radionuclide therapy strategies showed promise in several clinical trials against various cancers including metastatic melanoma. This led our group to investigate the combination of these two treatments which could be potentially offered to patients with metastatic melanoma not responsive to ICB alone. Previously, we have demonstrated that a combination of humanized anti-melanin antibody conjugated to 213Bismuth and anti-PD-1 ICB reduced tumor growth and increased survival in the Cloudman S91 murine melanoma DBA/2 mouse model. In the current study, we sought to improve the tumoricidal effect by using the long-lived radionuclides 177Lutetium and 225Actinium. Male Cloudman S91-bearing DBA/2 mice were treated intraperitoneally with PBS (Sham), unlabeled antibody to melanin, anti-PD-1 ICB, 177Lutetium or 225Actinium RIT, or a combination of ICB and RIT. Treatment with anti-PD-1 alone or low-dose 177Lutetium RIT alone resulted in modest tumor reduction, while their combination significantly reduced tumor growth and increased survival, suggesting synergy. 225Actinium RIT, alone or in combination with ICB, showed no therapeutic benefit, suggesting that the two radionuclides with different energetic properties work in distinct ways. We did not detect an increase in tumor-infiltrating T cells in the tumor microenvironment, which suggests the involvement of alternative mechanisms that improve the effect of combination therapy beyond that observed in the single therapies.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoconjugados/farmacología , Inmunoterapia/métodos , Melaninas/antagonistas & inhibidores , Melanoma Experimental/terapia , Radioinmunoterapia/métodos , Animales , Línea Celular Tumoral , Terapia Combinada , Humanos , Inmunoconjugados/inmunología , Masculino , Melaninas/inmunología , Melaninas/metabolismo , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones Endogámicos DBA , Análisis de Supervivencia , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
6.
Sci Rep ; 10(1): 20405, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230154

RESUMEN

The Cannabis sativa plant contains more than 120 cannabinoids. With the exceptions of ∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD), comparatively little is known about the pharmacology of the less-abundant plant-derived (phyto) cannabinoids. The best-studied transducers of cannabinoid-dependent effects are type 1 and type 2 cannabinoid receptors (CB1R, CB2R). Partial agonism of CB1R by ∆9-THC is known to bring about the 'high' associated with Cannabis use, as well as the pain-, appetite-, and anxiety-modulating effects that are potentially therapeutic. CB2R activation by certain cannabinoids has been associated with anti-inflammatory activities. We assessed the activity of 8 phytocannabinoids at human CB1R, and CB2R in Chinese hamster ovary (CHO) cells stably expressing these receptors and in C57BL/6 mice in an attempt to better understand their pharmacodynamics. Specifically, ∆9-THC, ∆9-tetrahydrocannabinolic acid (∆9-THCa), ∆9-tetrahydrocannabivarin (THCV), CBD, cannabidiolic acid (CBDa), cannabidivarin (CBDV), cannabigerol (CBG), and cannabichromene (CBC) were evaluated. Compounds were assessed for their affinity to receptors, ability to inhibit cAMP accumulation, ßarrestin2 recruitment, receptor selectivity, and ligand bias in cell culture; and cataleptic, hypothermic, anti-nociceptive, hypolocomotive, and anxiolytic effects in mice. Our data reveal partial agonist activity for many phytocannabinoids tested at CB1R and/or CB2R, as well as in vivo responses often associated with activation of CB1R. These data build on the growing body of literature showing cannabinoid receptor-dependent pharmacology for these less-abundant phytocannabinoids and are critical in understanding the complex and interactive pharmacology of Cannabis-derived molecules.


Asunto(s)
Analgésicos/farmacología , Ansiolíticos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Cannabis/química , Psicotrópicos/farmacología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/genética , Analgésicos/aislamiento & purificación , Animales , Ansiolíticos/aislamiento & purificación , Células CHO , Cannabidiol/aislamiento & purificación , Cannabidiol/farmacología , Agonistas de Receptores de Cannabinoides/aislamiento & purificación , Cannabinoides/aislamiento & purificación , Cannabinoides/farmacología , Cricetulus , Dronabinol/análogos & derivados , Dronabinol/aislamiento & purificación , Dronabinol/farmacología , Expresión Génica , Humanos , Ratones Endogámicos C57BL , Extractos Vegetales/química , Psicotrópicos/aislamiento & purificación , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Transgenes , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
7.
Fungal Biol ; 124(5): 368-375, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32389299

RESUMEN

Black fungi withstand extreme stresses partly due to the presence of melanin. Melanin is associated with structural integrity and resistance to chemical and radiation stress. This results in improved health and fitness, specifically in extreme conditions. Our goal was to exploit the radiation sensing nature of melanized fungus in order to develop a radioadapted strain capable of responding to radiation in the environment. The protracted exposure of a melanized fungus, Wangiella dermatitidis, to a mixed source of radiation altered the electron transport properties. There was no effect in an albino mutant wdpsk1. We then tested the growth response to radiation in the environment, with shielding from direct exposure to the radiation. Gamma radiation caused increased colony growth irrespective of exposure history in melanized fungus. Beta particles produced growth inhibition. The previously exposed melanized strain demonstrated colony growth in response to alpha particles in the environment. Alpha particles have a higher linear energy transfer, which produces more reactive oxygen species. Our previously exposed melanized strain was resistant to the toxic effects of H2O2, while the naïve and non-melanized strains were sensitive. We propose that previous radiation exposure introduces adaptations that equip melanized fungi to tolerate, sense, and respond to radiation byproducts.


Asunto(s)
Ambiente , Exophiala , Melaninas , Radiación Ionizante , Partículas alfa , Partículas beta , Exophiala/genética , Exophiala/crecimiento & desarrollo , Exophiala/efectos de la radiación , Rayos gamma , Melaninas/metabolismo , Mutación
8.
Pharmaceutics ; 11(7)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323785

RESUMEN

Melanoma is a cancer with increasing incidence and there is a need for alternatives to immunotherapy within effective approaches to treatment of metastatic melanoma. We performed comparative radioimmunotherapy (RIT) of experimental B16-F10 melanoma with novel humanized IgG to melanin h8C3 labeled with a beta emitter, 177Lu, and an alpha-emitter, 213Bi, as well as biodistribution, microSPECT/CT imaging, and mouse and human dosimetry calculations. microSPECT/CT imaging showed that a humanized antibody that targets "free" melanin in the tumor microenvironment had high tumor uptake in B16F10 murine melanoma in C57Bl/6 mice, with little to no uptake in naturally melanized tissues. Extrapolation of the mouse dosimetry data to an adult human demonstrated that doses delivered to major organs and the whole body by 177Lu-h8C3 would be approximately two times higher than those delivered by 213Bi-h8C3, while the doses to the tumor would be almost similar. RIT results indicated that 213Bi-h8C3 was more effective in slowing down the tumor growth than 177Lu-h8C3, while both radiolabeled antibodies did not produce significant hematologic or systemic side effects. We concluded that h8C3 antibody labeled with 213Bi is a promising reagent for translation into a clinical trial in patients with metastatic melanoma.

9.
Pharmaceutics ; 10(4)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563123

RESUMEN

(1) Background: Monoclonal antibodies are used in the treatment of multiple conditions including cancer, autoimmune disorders, and infectious diseases. One of the initial steps in the selection of an antibody candidate for further pre-clinical development is determining its pharmacokinetics in small animal models. The use of mass spectrometry and other techniques to determine the fate of these antibodies is laborious and expensive. Here we describe a straightforward and highly reproducible methodology for utilizing radiolabeled antibodies for pharmacokinetics studies. (2) Methods: Commercially available bifunctional linker CHXA" and 111Indium radionuclide were used. A melanin-specific chimeric antibody A1 and an isotype matching irrelevant control A2 were conjugated with the CHXA", and then radiolabeled with 111In. The biodistribution was performed at 4 and 24 h time points in melanoma tumor-bearing and healthy C57BL/6 female mice. (3) The biodistribution of the melanin-binding antibody showed the significant uptake in the tumor, which increased with time, and very low uptake in healthy melanin-containing tissues such as the retina of the eye and melanized skin. This biodistribution pattern in healthy tissues was very close to that of the isotype matching control antibody. (4) Conclusions: The biodistribution experiment allows us to assess the pharmacokinetics of both antibodies side by side and to make a conclusion regarding the suitability of specific antibodies for further development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA