Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 38(19): 3918-21, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24081088

RESUMEN

We investigated the carrier-envelope phase (CEP) stability of hollow-fiber compression for high-energy few-cycle pulse generation. Saturation of the output pulse energy is observed at 0.6 mJ for a 260 µm inner-diameter, 1 m long fiber, statically filled with neon. The pressure is adjusted to achieve output spectra supporting sub-4-fs pulses. The maximum output pulse energy can be increased to 0.8 mJ by either differential pumping (DP) or circularly polarized input pulses. We observe the onset of an ionization-induced CEP instability, which saturates beyond input pulse energies of 1.25 mJ. There is no significant difference in the CEP stability with DP compared to static-fill.

2.
Opt Lett ; 37(11): 2064-6, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22660122

RESUMEN

We present a method for the creation of stable weakly ionized plasmas from laser ablation of solid targets using a 1 kHz pulse repetition rate laser, which can be used for stable high-order harmonic generation from plasma plumes. The plasma plumes were generated from cylindrical rotating targets. Without target rotation the intensity of harmonics in the 40-80 nm range drops by more than one order of magnitude during less than 10(3) shots, while, with rotation of the target at typically 30 revolutions per minute, stable emission of high-order harmonics from aluminum plasma plumes with variation of less than 10% was maintained for >10(6) laser shots.

3.
Phys Rev Lett ; 107(15): 153902, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-22107293

RESUMEN

We demonstrate control of short and long quantum trajectories in high harmonic emission through the use of an orthogonally polarized two-color field. By controlling the relative phase ϕ between the two fields we show via classical and quantum calculations that we can steer the two-dimensional trajectories to return, or not, to the core and so control the relative strength of the short or long quantum trajectory contribution. In experiments, we demonstrate that this leads to robust control over the trajectory contributions using a drive field from a femtosecond laser composed of the fundamental ω at 800 nm (intensity ∼1.2×10(14) W cm(-2)) and its weaker orthogonally polarized second harmonic 2ω (intensity ∼0.3×10(14) W cm(-2)) with the relative phase between the ω and 2ω fields varied simply by tilting a fused silica plate. This is the first demonstration of short and long quantum trajectory control at the single-atom level.

4.
Opt Lett ; 36(10): 1746-8, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21593877

RESUMEN

We present a technique for frequency-resolved wavefront characterization of high harmonics based on lateral shearing interferometry. Tilted replicas of the driving laser pulse are produced by a Mach-Zehnder interferometer, producing separate focii in the target. The interference of the resulting harmonics on a flat-field extreme ultraviolet spectrometer yields the spatial phase derivative. A comprehensive set of spatial profiles, resolved by harmonic order, validate the technique and reveal the interplay of single-atom and macroscopic effects.

5.
Opt Lett ; 36(9): 1680-2, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21540967

RESUMEN

We report on the full amplitude and phase characterization of high-intensity few-cycle laser pulses generated in a single-stage hollow core fiber system with subsequent compression by ultrabroadband chirped mirrors. We use a spatially-encoded arrangement (SEA) spectral phase interferometry for direct electric field reconstruction (SPIDER) with spectral filters for ancilla generation to characterize the sub-4 fs pulses with spatial resolution.

6.
Opt Lett ; 35(23): 3994-6, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21124590

RESUMEN

We demonstrate enhancement by 1 order of magnitude of the high-order harmonics generated in argon by combining a fundamental field at 1300 nm (10(14) W cm(-2)) and its orthogonally polarized second harmonic at 650 nm (2 × 10(13) W cm(-2)) and by controlling the relative phase between them. This extends earlier work by ensuring that the main effect is the combined field steering the electron trajectory with negligible contribution from multiphoton effects compared to the previous schemes with 800/400 nm fields. We access a broad energy range of harmonics (from 20 eV to 80 eV) at a low laser intensity (far below the ionization saturation limit) and observe deep modulation of the harmonic yield with a period of π in the relative phase. Strong field theoretical analysis reveals that this is principally due to the steering of the recolliding electron wave packet by the two-color field. Our modeling also shows that the atto chirp can be controlled, leading to production of shorter pulses.

7.
Opt Express ; 16(18): 13606-16, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18772971

RESUMEN

When laser-etching channels through solid targets, the etch-rate is known to decrease with increasing depth, partly because of absorption at the sides of the channel. For ultrafast-laser pulses at repetition rates >100 MHz, we show that the etch-rate is also affected by optical properties of the beam: the channel acts as a waveguide, and so the pulses will decompose into dispersive normal modes. Additionally, plasma on the inner surface of the channel will cause scattering of the beam. These effects will cause a loss of spatial coherence in the pulse, which will affect the propagated intensity distribution and ultimately the etch-rate. We have characterized this effect for various foil thicknesses to determine the evolution of the beam while drilling through metal.


Asunto(s)
Diseño Asistido por Computadora , Rayos Láser , Materiales Manufacturados , Modelos Teóricos , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...